EGU23-12017
https://doi.org/10.5194/egusphere-egu23-12017
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

The GW-SW dynamics of a perennial dryland river in the semi-arid region, India

Anukritika Raj1, Vikrant Jain1, Vivek Kumar Bind1, Virendra Padhya2, and Rajendrakumar Dattatraya Deshpande2
Anukritika Raj et al.
  • 1Indian Institute of Technology Gandhinagar, Indian Institute of Technology Gandhinagar, Earth Sciences, Gandhinagar, India
  • 2Geosciences Division, Physics Research Laboratory, Ahmedabad, India

The Groundwater-Surface water (GW-SW) interaction governed by vertical connectivity, drainage pattern, subsurface lithology, vegetation cover, and land use determines the water availability in semi-arid dryland regions. It plays a crucial role in eco-hydrology, effective water resource management and overall socio-economic development in these marginal environments. Furthermore, the perennial dryland rivers flowing through these semi-arid dryland regions undergo substantial precipitation and flow variability, thus making sustainable water management challenging. Nevertheless, an understanding of the GW-SW dynamics, its spatial variability and the processes influencing the water supply in the semi-arid perennial dryland rivers are still lacking. For this purpose, the stable isotopes of oxygen and hydrogen, in terms of δ18O, δ2H and d-excess parameters of water samples, have been used to assess the GW-SW interaction in the semi-arid perennial Mahi River basin, India. The Mahi River has a length of ~560 km and a drainage basin area of ~34k km2. In total, 53 samples of groundwater and 14 samples of river water were collected during the dry season. In a given river transect, GW samples were collected from both river banks at a distance of around 1 km and 2km, respectively. The result shows changes in GW-SW connectivity at the reach scale. The SW in the downstream and middle reaches (36 to 208km from the river mouth) is characterised by a progressive decrease in δ18O from -1.3 ‰ to -2.6‰. The decrease in the δ18O value in the middle and downstream reaches indicates the mixing of depleted GW into the river. The trend changes in the upstream reaches (208 to 491km), where the SW becomes progressively enriched in δ18O from about -2.1‰ to 0.08‰, with reach scale variability. The upstream reaches also show a decrease in d-excess value from -3.2‰ to -7.2‰, along with the increasing δ18O values suggesting enhanced evaporation of SW during the low flow conditions. The average δ18O of SW in the middle and downstream reach is -1.9 ‰, whereas the average δ18O of the upstream reach is -0.5 ‰. The slope of the GW δ18O-δ2H regression line is lower than that of the Global Meteoric Water Line (GMWL), suggesting that the GW undergoes substantial evaporation. The variability of isotopic values and mixing of GW with SW demonstrates that the river channel shows enhanced vertical connectivity for middle and downstream reaches even during the dry season. However, there is vertical disconnectivity in the upstream reaches. This study highlights the need for different management strategies for various reaches of the spatially variable and dynamic perennial dryland rivers in a semi-arid region.

How to cite: Raj, A., Jain, V., Bind, V. K., Padhya, V., and Deshpande, R. D.: The GW-SW dynamics of a perennial dryland river in the semi-arid region, India, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-12017, https://doi.org/10.5194/egusphere-egu23-12017, 2023.