EGU23-12480, updated on 26 Feb 2023
https://doi.org/10.5194/egusphere-egu23-12480
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Modelling Impacts of Groundwater Flow on Borehole Heat Exchangers: Lessons Learned from Estonia

Kaiu Piipponen1, Alvar Soesoo2, Heikki Bauert3, and Teppo Arola1
Kaiu Piipponen et al.
  • 1Geological Survey of Finland, Espoo, Finland
  • 2Department of Geology, Tallinn University of Technology, Tallinn, Estonia
  • 3Geological Survey of Estonia, F. Rakvere, Estonia

Production of geothermal energy relies heavily on subsurface properties. In low-enthalpy geothermal regimes, thermal energy extracted with a borehole heat exchanger (BHE) is the subsurface heat conducted from the rock and grout to the BHE fluid. No subsurface fluids are pumped in or out of the BHE system in the process. However, groundwater flow can bring warm or cold fluid from the surroundings which changes the temperature profile in the well and the vicinity and thus it can affect well heat production.

The geology in Estonia provides a good opportunity to study the groundwater influence on the BHE systems. In Estonia, several hundred meters thick Lower Palaeozoic sedimentary rock sequence is mostly covered by relatively thin Quaternary sediments, while the underlying Lower Proterozoic crystalline basement rocks occur at depths from 150 m in North Estonia to over 600 m in South Estonia. The main groundwater aquifers are confined to the Palaeozoic sedimentary rocks. In North Estonia, the main groundwater aquifers overlying the crystalline basement rocks are Gdov, Voronka, Cambrian-Vendian, Ordovician-Cambrian, and Silurian-Ordovician aquifers. Those aquifers have different thermogeological and hydrogeological parameters shown by several groundwater hydrogeological and hydrodynamic studies and modelling. Only a few geothermal energy studies have been conducted in the Estonian geological setting and the groundwater effects on the geothermal energy budget on the shallow to medium depth geothermal energy systems have not yet been studied in detail.

In this study, we parametrized different hydraulic conditions to compare how the groundwater flow velocity impacts the thermal energy yield of the geothermal system. We modelled single BHEs of lengths of 400 m, 500 m and 1000 m and a BHE field of ten 400 m wells at three sites across Estonia. 400 m wells have a U-tube type heat collector grouted with bentonite clay and the 500 m and 1000 m wells have a coaxial heat exchanger of plastic pipe or a vacuum-insulated tube (VIT), respectively. Our results demonstrate that 1) the thermogeological parameters of the area, such as subsurface temperature and thermal conductivity, are the most significant factor in the thermal energy yield of the wells and 2) at all sites, shallow BHEs are sensitive to the added groundwater flow, whereas 1-kilometer-deep coaxial wells with VIT are the least sensitive to the addition. An interesting highlight is that the increase in the thermal energy yield is not consistent at different locations with the groundwater flow variation. At sites where the aquifers are located deep with respect to the borehole length, an increase in groundwater flow velocity brought more advantages than at sites where permeable layers are distributed more evenly or near the top of the geothermal well.

How to cite: Piipponen, K., Soesoo, A., Bauert, H., and Arola, T.: Modelling Impacts of Groundwater Flow on Borehole Heat Exchangers: Lessons Learned from Estonia, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-12480, https://doi.org/10.5194/egusphere-egu23-12480, 2023.