The cluster who came in from the cold: Nonisothermal nucleation in the gas phase is driven by cool subcritical clusters
- 1Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland (valtteri.tikkanen@helsinki.fi)
- 2Center for Joint Quantum Studies and Department of Physics, Tianjin University, Tianjin, China
Nucleation of clusters from the gas phase is a widely encountered phenomenon, e.g. regional air quality and global climate are both directly impacted by particle formation from atmospheric trace gases [1]. Still, the underlying out-of-equilibrium dynamics of this process are not well understood. The classical view of nucleation assumes isothermal conditions where the nucleating clusters are in thermal equilibrium with their surroundings. However, as in all first-order phase transitions, latent heat is released, potentially heating the clusters and suppressing the nucleation. The question of how the released energy affects cluster temperatures during nucleation as well as the growth rate remains controversial.
To investigate the nonisothermal dynamics and energetics of homogeneous nucleation, we have performed molecular dynamics (MD) simulations of a supersaturated Lennard-Jones (LJ) vapor in the presence of thermalizing carrier gas. In addition, a previous study of homogeneous nucleation of carbon dioxide in argon carrier gas [2] was revisited for temperature analysis of the growing CO2 clusters. The results obtained from these simulations are compared against kinetic modeling of isothermal nucleation and the classical nonisothermal theory by Feder et al. [3], which also predicts the existence of cool subcritical clusters, and has been quite controversial.
For the studied systems, we find that nucleation rates are suppressed by two orders of magnitude at most, despite substantial release of latent heat. Our analyses further reveal that while the temperatures of the entire cluster size populations are indeed elevated, the temperatures of the specific clusters driving the nucleation flux evolve from cold to hot when growing from subcritical to supercritical sizes. This resolves the apparent contradiction between elevated cluster temperatures and minor nonisothermal corrections to the nucleation rate, both often reported in literature, and is in excellent agreement with the theory of Feder et al. Our findings provide unprecedented insight into realistic nucleation events and allow us to directly assess earlier theoretical considerations of nonisothermal nucleation.
References
[1] M. Kulmala et al., Direct observations of atmospheric aerosol nucleation. Science 339, 943–946 (2013).
[2] R. Halonen et al., Homogeneous nucleation of carbon dioxide in supersonic nozzles II: Molecular dynamics simulations and properties of nucleating clusters. Phys. Chem. Chem. Phys. 23, 4517–4529 (2021).
[3] J. Feder, K. C. Russell, J. Lothe, G. M. Pound, Homogeneous nucleation and growth of droplets in vapours. Adv. Phys. 15, 111–178 (1966).
How to cite: Tikkanen, V., Reischl, B., Vehkamäki, H., and Halonen, R.: The cluster who came in from the cold: Nonisothermal nucleation in the gas phase is driven by cool subcritical clusters, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-12521, https://doi.org/10.5194/egusphere-egu23-12521, 2023.