Comparison of PM2.5 concentrations prediction model performance using Artificial Intelligence
- 1Department of Environmental Engineering, Anyang University, Anyang, Gyeonggi, Republic of Korea
- 2Department of Environmental and Energy Engineering, Anyang University, Anyang, Gyeonggi, Republic of Korea
Since PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 µm) directly threatens public health, in order to take appropriate measures(prevention) in advance, the Korea Ministry of Environment(MOE) has been implementing PM10 forecast nationwide since February 2014. PM2.5 forecasts have been implemented nationwide since January 2015. The currently implemented PM forecast by the MOE subdivides the country into 19 regions, and forecasts the level of PM in 4 stages of “Good”, “Moderate”, “Unhealthy”, and “Very unhealthy”.
Currently PM air quality forecasting system operated by the MOE is based on a numerical forecast model along with a weather and emission model. Numerical forecasting model has fundamental limitations such as the uncertainty of input data such as emissions and meteorological data, and the numerical model itself. Recently, many studies on predicting PM using artificial intelligence such as DNN, RNN, LSTM, and CNN have been conducted to overcome the limitations of numerical models.
In this study, in order to improve the prediction performance of the numerical model, past observational data (air quality and meteorological data) and numerical forecasting model data (chemical transport model) are used as input data. The machine learning model consists of DNN and Seq2Seq, and predicts 3 days (D+0, D+1, D+2) using 6-hour and 1-hour average input data, respectively. The PM2.5 concentrations predicted by the machine learning model and the numerical model were compared with the PM2.5 measurements.
The machine learning models were trained for input data from 2015 to 2020, and their PM forecasting performance was tested for 2021. Compared to the numerical model, the machine learning model tended to increase ACC and be similar or lower to FAR and POD.
Time series trend was showed machine learning PM forecasting trend is more similar to PM measurements compared with numerical model. Especially, machine learning forecasting model can appropriately predict PM low and high concentrations that numerical model is used to overestimate.
Machine learning forecasting model with DNN and Seq2Seq can found improvement of PM forecasting performance compared with numerical forecasting model. However, the machine learning model has limitations that the model can not consider external inflow effects.
In order to overcome the drawback, the models should be updated and added some other machine learning module such as CNN with spatial features of PM concentrations.
Acknowledgements
This study was supported in part by the ‘Experts Training Graduate Program for Particulate Matter Management’ from the Ministry of Environment, Korea and by a grant from the National Institute of Environmental Research (NIER), funded by the Ministry of Environment (ME) of the Republic of Korea (NIER-2022-04-02-068).
How to cite: Wang, K.-H., Lee, C.-Y., Lee, J.-Y., Jung, M.-W., Kim, D.-G., Han, S.-H., Choi, D.-R., and Yun, H.: Comparison of PM2.5 concentrations prediction model performance using Artificial Intelligence, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12566, https://doi.org/10.5194/egusphere-egu23-12566, 2023.