EGU23-12900
https://doi.org/10.5194/egusphere-egu23-12900
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Tipping Points: A challenge for climate change projections

Thomas Stocker
Thomas Stocker
  • University of Bern, Physics Institute, Bern, Switzerland (stocker@climate.unibe.ch)

Multiple equilibria are found in all members of the hierarchy of climate models, ranging from simple planetary energy balance models to fully coupled general circulation models. They arise from the physical and biogeochemical coupling of different climate system components, and hence they are a general feature of planetary dynamics. Transitions from one equilibrium to another can be triggered by a temporary perturbation of the system which crosses a tipping point. Greenland ice cores and many other paleoclimate archives have abundantly demonstrated that the Earth System had limited stability during the last ice ages and that tipping has occurred in the past. A particularly dynamic period was the transition from the last ice age to the present. We present recent model simulations that reconcile different paleoceanographic indicators and so permit the quantitative reconstruction of the transient changes of the Atlantic meridional overturning circulation. This circulation may also tip in the future depending on the level and rate of increases in greenhouse gas concentrations. However, reducing the uncertainties where such tipping points lie and how close the climate system is to them, requires much better resolved climate models.

The tipping of regional systems has come into recent focus because the impacts on humans and ecosystems may be substantial. Among them are the various monsoon systems, parts of the Antarctic ice sheet, shifts in the statistics of extreme climate and weather events, the extent of the Amazon rain forest, or the grassland distribution in Eastern Africa, and hence biodiversity. Such changes would all have regional consequences that are not yet reflected in current climate change projections.

Therefore, regional tipping needs to be assessed systematically by the scientific community using a new generation of climate models at kilometer-scale resolution. A cross-working group IPCC Special Report on “Climate Tipping Points and Consequences for Habitability and Resources” in its forthcoming 7th assessment cycle would help strengthening a consensus on this topic and trigger the much needed advances in scientific understanding to more comprehensively inform adaptation and mitigation strategies.

 

How to cite: Stocker, T.: Tipping Points: A challenge for climate change projections, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-12900, https://doi.org/10.5194/egusphere-egu23-12900, 2023.