EGU23-12925, updated on 26 Jul 2023
https://doi.org/10.5194/egusphere-egu23-12925
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interannual Variation of Land-Atmosphere Interactions and their Connection with Extremes over Europe

Lisa Jach, Thomas Schwitalla, Volker Wulfmeyer, and Kirsten Warrach-Sagi
Lisa Jach et al.
  • University of Hohenheim, Institute of Physics and Meteorology, Stuttgart, Germany (lisa.jach@uni-hohenheim.de)

The land surface supplies heat and moisture to the atmosphere influencing the regional climate during the convective season. Availability of soil moisture for evapotranspiration, vegetation phenology and atmospheric conditions influence the strength of the land surface impact on the atmosphere, and the mechanisms predominating the heat and moisture exchange. As both the synoptic conditions as well as the vegetation state vary on sub-seasonal to interannual time scales, the strength of land-atmosphere (L-A) interaction is expected to fluctuate on these time scales.

Up to now, research typically either focuses on case studies to understand the mechanisms of how land surface and atmosphere interact, or on climatic time scales to quantify co-variances in the climate system based on a sufficient sample size. Timescales in between remain rarely considered in land-atmosphere feedback studies.

In our study, we applied various L-A coupling measures to evaluate land surface impacts on the atmosphere and quantify interactions associated with the triggering of convective precipitation and droughts for all summers between 1991 and 2022 over Europe based on ERA5 data.

Our results highlight that differently strong L-A interactions evolve in dependence of atmospheric wetness, temperature, and the circulation pattern, as well as the root zone soil moisture and vegetation cover. Under warm and dry conditions such as in 2003, 2018 and 2022, soil moisture availability imposed limits for evapotranspiration not only in Southern Europe, but also in Central and Eastern Europe, interfering with vegetation growth and atmospheric moisture supply. Limited moisture and excessive heat supply amplified the already high temperatures and low near-surface moisture, which finally aggravated the unfavorable conditions for local precipitation and caused extreme drought conditions. On the contrary, warm and wet conditions such as in 2021 provided well-suited conditions for vegetation growth, which enhanced the moisture supply to the atmosphere. Together with stronger atmospheric instability, this provided more favorable preconditions for convective precipitation. Generally, most L-A interactions perform as an intensifier of persisting anomalies, particularly under warm and dry atmospheric conditions over Europe.

How to cite: Jach, L., Schwitalla, T., Wulfmeyer, V., and Warrach-Sagi, K.: Interannual Variation of Land-Atmosphere Interactions and their Connection with Extremes over Europe, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12925, https://doi.org/10.5194/egusphere-egu23-12925, 2023.