EGU23-13013
https://doi.org/10.5194/egusphere-egu23-13013
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Using cGAN for cloud classification from RGB pictures

Markus Rosenberger, Manfred Dorninger, and Martin Weißmann
Markus Rosenberger et al.
  • Department of Meteorology and Geophysics, University of Vienna, Vienna , Austria

Clouds of all kinds play a large role in many atmospheric processes including, e.g. radiation and moisture transport, and their type allows an insight into the dynamics going on in the atmosphere. Hence, the observation of clouds from Earth's surface has always been important to analyse the current weather and its evolution during the day. However, cloud observations by human observers are labour-intensive and hence also costy. In addition to this, cloud classifications done by human observers are always subjective to some extent. Finding an efficient method for automated observations would solve both problems. Although clouds have already been operationally observed using satellites for decades, observations from the surface shed a light on a different set of characteristics. Moreover, the WMO also defined their cloud classification standards according to visual cloud properties when observations are done at the Earth’s surface. Thus, in this work a utilization of machine learning methods to classify clouds from RGB pictures taken at the surface is proposed. Explicitly, a conditional Generative Adversarial Network (cGAN) is trained to discriminate between 30 different categories, 10 for each cloud level - low, medium and high; Besides showing robust results in different image classification problems, an additional advantage of using a GAN instead of a classical convolutional neural network is that its output can also artificially enhance the size of the training data set. This is especially useful if the number of available pictures is unevenly distributed among the different classes. Additional background observations like cloud cover and cloud base height can also be used to further improve the performance of the cGAN. Together with a cloud camera, a properly trained cGAN can observe and classify clouds with a high temporal resolution of the order of seconds, which can be used, e.g. for model verification or to efficiently monitor the current status of the weather as well as its short-time evolution. First results will also be presented.

How to cite: Rosenberger, M., Dorninger, M., and Weißmann, M.: Using cGAN for cloud classification from RGB pictures, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-13013, https://doi.org/10.5194/egusphere-egu23-13013, 2023.

Supplementary materials

Supplementary material file