EGU23-13083, updated on 26 Feb 2023
https://doi.org/10.5194/egusphere-egu23-13083
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Machine learning modelling of compound flood events

Agnieszka Indiana Olbert, Sogol Moradian, and Galal Uddin
Agnieszka Indiana Olbert et al.
  • University of Galway, Ryan Institute, Civil Engineering, Galway, Ireland (indiana.olbert@nuigalway.ie)

Flood early warning systems are vital for preventing flood damages and for reducing disaster risks. Such systems are particularly important for forecasting compound events where multiple, often dependent flood drivers co-occur and interact. In this research an early warning system for prediction of coastal-fluvial floods is developed to provide a robust, cost-effective and time-efficient framework for management of flood risks and impacts. This three-step method combines a cascade of three linked models: (1) statistical model that determines probabilities of multiple-driver flood events, (2) hydrodynamic model forced by outputs from the statistical model, and finally (3) machine learning (ML) model that uses hydrodynamic outputs from various probability flood events to train the ML algorithm in order to predict the spatially and temporarily variable inundation patterns resulting from a combination of coastal and fluvial flood drivers occurring simultaneously.

The method has been utilized for the case of Cork City, located in the south-west of Ireland, which has a long history of fluvial-coastal flooding. The Lee  River channelling through the city centre may generate a substantial flood when the downstream river flow draining to the estuary coincides with the sea water propagating upstream on a flood tide. For this hydrological domain the statistical model employs the univariate extreme values analysis and copula functions to calculate joint probabilities of river discharges and sea water levels (astronomical tides and surge residuals) occurring simultaneously. The return levels for these two components along a return level curve produced by the copula function are used to generate synthetic timeseries, which serve as water level boundary conditions for a hydrodynamic flood model. The multi-scale nested flood model (MSN_Flood) was configured for Cork City at 2m resolution to simulate an unsteady, non-uniform flow in the Lee  River and a flood wave propagation over urban floodplains. The ensemble hydrodynamic model outputs are ultimately used to train and test a range machine learning models for prediction of flood extents and water depths. In total, 23 machine learning algorithms including: Artificial Neural Network, Decision Tree, Gaussian Process Regression, Linear Regression, Radial Basis Function, Support Vector Machine, and Support Vector Regression were employed to confirm that the ML algorithm can be used successfully to predict the flood inundation depths over urban floodplains for a given set of compound flood drivers. Here, the limited flood conditioning factors taken into account to analyse floods are the upstream flood hydrographs and downstream sea water level timeseries. To evaluate model performance, different statistical skill scores were computed. Results indicated that in most pixels, the Gaussian Process Regression model performs better than the other models.

The main contribution of this research is to demonstrate the ML models can be used in early warning systems for flood prediction and to give insight into the most suitable models in terms of robustness, accuracy, effectiveness, and speed. The findings demonstrate that ML models do help in flood water propagation mapping and assessment of flood risk under various compound flood scenarios.

How to cite: Olbert, A. I., Moradian, S., and Uddin, G.: Machine learning modelling of compound flood events, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-13083, https://doi.org/10.5194/egusphere-egu23-13083, 2023.