EGU23-13091, updated on 26 Feb 2023
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Emergent constraints on the future Arctic lapse-rate feedback

Olivia Linke1, Nicole Feldl2, and Johannes Quaas1
Olivia Linke et al.
  • 1Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany
  • 2Department of Earth and Planetary Sciences, University of California at Santa Cruz, Santa Cruz, California USA

Arctic amplification (AA) is largely attributed to the effect of sea ice decline leading to greater surface solar absorption and further ice melt, and the vertical structure of the warming. The latter aspect evokes the positive lapse-rate feedback (LRF), which is commonly understood as an effect of stable stratification: The warming in the Arctic is particularly strong close to the surface, but muted aloft. This limits the outgoing long-wave radiative flux at the top-of-the-atmosphere (TOA) relative to vertically uniform warming.

We estimate the future Arctic LRF in 43 global climate models (GCMs) from the highest emission pathway SSP5 of CMIP6. The GCMs simulate a large spread of future AA (2-8 K above global warming) and Arctic LRF (1-4 K warming contribution) at the end of the century 2070-2099. Our work aims to identify emerging relationships between this spread and observable aspects of the current climate to ultimately narrow down the range of future Arctic climate predictions.

Previous studies have identified an emerging relationship for the surface-albedo feedback based on the observed seasonal cycle of Arctic sea ice. We similarly derive a positive relationship (r=0.70) between future and seasonal LRF, but due to its nature, no direct observation of the LRF exists. However, we find relationships between the future LRF and observable sea ice metrics, namely sea ice concentration, seasonality, extent and area. From these relationships, the sea ice concentration provides the strongest correlation (r=-0.76) for the area-averaged Arctic sea ice cover. This relationship implies a contribution of the LRF to future Arctic warming of approx. 2 K, which further relates to an AA of 4 K above global average at the end of the century.

We further emphasise the physical meaning behind our constraint: The negative emerging relationship implies that models with a lower Pan-Arctic sea ice concentration produce a larger LRF in the future. However, when dividing the entire sea ice area into regions of sea ice retreat (SIR) and persisting sea ice (PSI) in the future prediction, the relationship becomes positive over these two area-averaged regions. Thereby, the negative overall relationship is merely a result of the area-size distribution of SIR vs. PSI across the spread of model simulations. We conclude that while the Pan-Arctic perspective enables the emergent constraint, the physical meaning is hidden: A higher initial sea ice concentration produces a stronger positive Arctic LRF by setting the stage for greater sea ice retreat.

How to cite: Linke, O., Feldl, N., and Quaas, J.: Emergent constraints on the future Arctic lapse-rate feedback, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-13091,, 2023.

Supplementary materials

Supplementary material file