EGU23-13110, updated on 08 Apr 2024
https://doi.org/10.5194/egusphere-egu23-13110
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Recent progress and outlook for the ECMWF Integrated Forecasting System

Gianpaolo Balsamo, Florence Rabier, Magdalena Balmaseda, Peter Bauer, Andy Brown, Peter Dueben, Steve English, Tony McNally, Florian Pappenberger, Irina Sandu, Jean-Noël Thepaut, and Nils Wedi
Gianpaolo Balsamo et al.
  • ECMWF, Reading, United Kingdom; Bologna, Italy; Bonn, Germany (gianpaolo.balsamo@ecmwf.int)

ECMWF recent improvements on scientific and technological fronts will be presented. In 2021 two new operational upgrades of the Integrated Forecasting System (IFS), cycles 47r2 and 47r3, have been introduced. In 2022 the ECMWF High-Performance Computing (HPC) facility has migrated from Reading, UK to a new data centre in Bologna, Italy, and on 18 October 2022 the operational system has been ported to a new supercomputer with enhanced capacity, that will pave the way for an increase in resolution in 2023 with the implementation of IFS cycle 48r1.

IFS Cycle 47r2 was first introduced on 11 May 2021 and its key features included changing the vertical resolution of the Ensemble forecast system (ENS) from 91 to 137 levels, the same used in the high-resolution forecast (HRES). This was made possible by introducing single precision arithmetic in both the HRES and ENS forecast systems. The single precision itself is neutral but enabled the ENS change which led to significant forecast skill improvement. Five months later, ECMWF introduced Cycle 47r3 operationally on 12 October 2021. This included major changes to the model physics that had been under development for several years. A more consistent formulation of boundary layer turbulence, new deep convection closure and cloud microphysics changes have increased the realism of the water cycle.

The next science upgrade, cycle 48r1, will be implemented in 2023 on our new HPC system in Bologna. This will see an enhancement of the ENS horizontal resolution to the TCo1279 grid (approximately 9km), the same resolution currently used by the HRES. There will also be an increase of the data assimilation resolution used in the incremental 4D-Var minimisation, and the use a new object orientated approach to run the 4D-Var atmospheric data assimilation (OOPS). Other important changes in 48r1 include running a daily 100 members extended range ensembles, introducing a new multi-layer snowpack model, and improving the atmospheric energy and water conservation.

Looking further ahead, future higher resolution capabilities will be accelerated by the digital twin developments under the European Commission Destination Earth programme, which will build km-scale capability for a range of potential future HPC architectures. Major efforts have been invested in the code scalability of the Integrated Forecasting System to be able to run on GPUs and investigating alternative dynamical core options. Data assimilation will evolve towards a fully coupled approach to maximise the exploitation of observations and benefit all components of the Earth system (atmosphere, land, ocean) in a consistent way. Machine Learning (ML) will be exploited to enhance the performance and efficiency of our systems. 

Finally, our Copernicus partnership with the European Commission has just entered its second phase. Synergistic interactions between meteorology and composition will be pursued for the mutual benefit of both and preparatory steps for next ECMWF climate reanalysis, ERA6, and new seasonal forecasting system, SEAS6, have already started. Several major upgrades in ERA6 and SEAS6 will aim at mitigating against systematic model biases to produce climate records with significantly improved time consistency, and enhanced reliability for extended-range predictions.

How to cite: Balsamo, G., Rabier, F., Balmaseda, M., Bauer, P., Brown, A., Dueben, P., English, S., McNally, T., Pappenberger, F., Sandu, I., Thepaut, J.-N., and Wedi, N.: Recent progress and outlook for the ECMWF Integrated Forecasting System, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13110, https://doi.org/10.5194/egusphere-egu23-13110, 2023.