EGU23-13143
https://doi.org/10.5194/egusphere-egu23-13143
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Comparison of LSTM, GraphNN, and IrradPhyDNet based Approaches for High-resolution Solar Irradiance Nowcasting

Petrina Papazek1, Irene Schicker1, and Pascal Gfähler2
Petrina Papazek et al.
  • 1Geosphere Austria, Wien, Austria (petrina.papazek@geosphere.at)
  • 2University of Vienna, Faculty of Computer Science, Wien, Austria

With fast parallel computing hardware, particularly GPUs, becoming more accessible in the geosciences the now efficiently running deep learning techniques are ready to handle larger amounts of recorded observation and satellite derived data and are able to learn complex structures across time-series. Thus, a suitable deep learning setup is able to generate highly-resolved weather forecasts in real-time and on demand. Forecasts of irradiance and radiation can be challenging in machine learning as they embrace a high degree of diurnal and seasonal variation.

Continuously extended PV/solar power production grows into one of our most important fossil-fuel free energy sources. Unlike the just recently emerging PV power observations, solar irradiance offers long time-series from automized weather station networks. Being directly linked to PV outputs, forecasting highly resolved solar irradiance from nowcasting to short-range plays a crucial role in decision support and managing PV.

In this study, we investigate the suitability of several deep learning techniques adopted and developed to a set of heterogeneous data sources on selected locations. We compare the forecast results to traditional – however computationally expensive - numerical weather prediction models (NWP) and rapid update cycle models. Relevant input features include 3D-fields from NWP models (e.g.: AROME), satellite data and products (e.g.: CAMS), radiation time series from remote sensing, and observation time time-series (site observations and close sites). The amount of time-series data can be extended by a synthetic data generator, a part of our deep learning framework. Our main models investigated includes a sequence-to-sequence LSTM (long-short-term-memory) model using a climatological background model or NWP for post-processing, a Graph NN model, and an analogs based deep learning method. Furthermore, a novel neural network model based on two other ideas, the IrradianceNet and the PhyDNet, was developed. IrradPhyDNet combines the skills of IrradianceNet and PhyDNet and showed improved performance in comparison to the original models.

Results obtained by the developed methods yield, in general, high forecast-skills. For selected case studies of extreme events (e.g. Saharan dust) all novel methods could outperform the traditional methods.  Different combinations of inputs and processing-steps are part of the analysis.

How to cite: Papazek, P., Schicker, I., and Gfähler, P.: Comparison of LSTM, GraphNN, and IrradPhyDNet based Approaches for High-resolution Solar Irradiance Nowcasting, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-13143, https://doi.org/10.5194/egusphere-egu23-13143, 2023.