EGU23-13322, updated on 10 Jan 2024
https://doi.org/10.5194/egusphere-egu23-13322
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Nodal Ambient Noise Tomography and automatic picking of dispersion curves with convolutional neural network: case study at Vulcano-Lipari, Italy

Douglas Stumpp1, Elliot Amir Jiwani-Brown2, Célia Barat1,2, Matteo Lupi2, Francisco Muñoz2, Thomas Planes2, and Geneviève Savard2
Douglas Stumpp et al.
  • 1Lemanic Joint School of Earth Sciences, University of Lausanne and University of Geneva, Lausanne, Geneva, Switzerland
  • 2Department of Earth Sciences, University of Geneva, Geneva, Switzerland

The ambient noise tomography (ANT) method is widely adopted to reconstruct shear-wave velocity anomalies and to generate high-resolution images of the crust and upper-mantle. A critical step in this process is the extraction of surface-wave dispersion curves from cross-correlation functions of continuous ambient noise recordings, which is traditionally performed manually on the dispersion spectrograms through human-machine interfaces. Picking of dispersion curves is sometimes prone to bias due to human interpretation. Furthermore, it is a laborious and time-consuming task that needs to be resolved in an automatized manner, especially when dealing with dense seismic network of nodal geophones where the large amount of generated data severely hinders manual picking approaches. In the last decade, several studies successfully employed machine learning methods in Earth Sciences and across many seismological applications. Early studies have shown versatile and reliable solutions by treating dispersion curve extraction as a visual recognition problem. 

We review and adapt a specific machine learning approach, deep convolutional neural networks, for use on dispersion spectrograms generated with the usual frequency-time analysis (FTAN) processing on ambient noise cross-correlations. To train and calibrate the algorithm we use several available datasets acquired from previous experiments across different geological settings. The main dataset consists of records acquired with a dense local geophone network (150 short period stations sampling at 250 Hz) deployed for one month in October 2021. The dataset has been acquired during the volcanic unrest of the Vulcano-Lipari complex, Italy. The network also accounts for additional 17 permanent broadband stations (sampling at 100 Hz) maintained by the National Institute of Geophysics and Volcanology (INGV) in Italy. We evaluate the performance of the dispersion curves extraction algorithm. The automatically-picked dispersion curves will be used to construct a shear-wave velocity model of the Vulcano-Lipari magmatic plumbing system and the surrounding area of the Aeolian archipelago.

 

How to cite: Stumpp, D., Amir Jiwani-Brown, E., Barat, C., Lupi, M., Muñoz, F., Planes, T., and Savard, G.: Nodal Ambient Noise Tomography and automatic picking of dispersion curves with convolutional neural network: case study at Vulcano-Lipari, Italy, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13322, https://doi.org/10.5194/egusphere-egu23-13322, 2023.