EGU23-13598
https://doi.org/10.5194/egusphere-egu23-13598
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Deciphering the role of terrestrial/atmospheric interactions in Late Devonian Kellwasser black shale deposition: A High-Resolution Cyclostratigraphic study of the Winsenberg section (Rhenish Massif, Germany) 

Nina Wichern1, Or Bialik1, Lawrence Percival2, Pim Kaskes2, Theresa Nohl3,1, Thomas Becker1, and David De Vleeschouwer1
Nina Wichern et al.
  • 1Institute of Geology and Paleontology, WWU Münster, Münster, Germany (nwichern@uni-muenster.de)
  • 2Analytical, Environmental, and Geochemistry Research Group (AMGC), Vrije Universiteit Brussel, Brussels, Belgium
  • 3Department of Palaeontology, Universität Wien, Vienna, Austria

The Late Devonian oceans were susceptible to the development of anoxic conditions, as evidenced by repeated widespread organic-rich shale deposition. Understanding how these anoxic facies were deposited will provide insight into Devonian climatic modes. To this end, we constructed a high-resolution cyclostratigraphic model based on portable XRF-generated elemental ratio records from a Frasnian-Famennian (~372 Ma) black shale section. These black shales are associated with the Kellwasser Crisis, one of the largest mass extinctions of the Phanerozoic, which is not fully understood to this day. The studied section at Winsenberg is located in the Rhenish Massif in Germany and represents a basinal setting at southern low paleolatitudes. Spectral analysis was carried out on the Si/Ca ratios generated by XRF, which is interpreted as the detrital (distal) vs carbonaceous (local) input. The resulting astrochronology suggests a duration of ca. 1 Myr from the base of the Lower Kellwasser to the F-F boundary at the top of the Upper Kellwasser level. This corresponds to an average sedimentation rate of 0.9 cm/kyr. Both the Lower and Upper Kellwasser shales occur at the onset of a 405 kyr eccentricity cycle. We further interpret the Ti/Al record as a riverine runoff signal, as Ti is associated with the coarse-grained fraction, and K/Al as a chemical weathering signal, as K is leached easier than Al. Both tuned records exhibit eccentricity-modulated precession cycles. On precession and short eccentricity timescales, Ti/Al and K/Al are positively correlated, suggesting an orbitally forced wet/dry monsoonal climate in the region where the section was deposited. On longer timescales, the weathering signal becomes decoupled from the riverine runoff signal, highlighting that K/Al (chemical weathering) decreased even during wetter periods. This decoupling is linked to soil maturation in the hinterland, as potassium leaching from mature soils became increasingly limited. Soil build-up and maturation forms a potential mechanism for nutrient storage and subsequent release into the ocean, potentially triggering eutrophication and anoxia.

How to cite: Wichern, N., Bialik, O., Percival, L., Kaskes, P., Nohl, T., Becker, T., and De Vleeschouwer, D.: Deciphering the role of terrestrial/atmospheric interactions in Late Devonian Kellwasser black shale deposition: A High-Resolution Cyclostratigraphic study of the Winsenberg section (Rhenish Massif, Germany) , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-13598, https://doi.org/10.5194/egusphere-egu23-13598, 2023.