EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

The effectiveness of using virtual reality materials in preparing students for geological fieldwork

Jan van Bever Donker1, Delia Marshal1, Matthew Huber1, Rudy Maart1, Luyanda Mayekiso1, Henok Solomon1, and Nompumelelo Mgabisa1,2
Jan van Bever Donker et al.
  • 1University of the Western Cape, Earth Sciences, Cape Town, South Africa (
  • 2Department of Water and Sanitation, Pretoria, South Africa


During the recent worldwide lockdowns due to the COVID-19 pandemic, several institutions around the world, out of necessity replaced their customary field work with virtual field trips, using existing photographic materials gathered over many years conducting the same fieldtrip, causing the lecturers to conclude that this was a reasonable alternative as the marks scored were similar. 

Several years before the pandemic hit, UWC’s Applied Geology section had already embarked on the development of high-resolution virtual field tours (VFTs)to use as supplementary material in the provision of field education to our geology students, based on the geocognition concept.  This was done as rising costs and increasing health and safety rules effectively forced us to keep fieldwork for students to an absolute minimum, which is unacceptable in geology education. Additionally, in this manner, students could be exposed to classical geology sites from anywhere in the world without having to travel there, as an archive of prime teaching outcrops could be built like this.


We created the Virtual Field Tours using High Resolution Photography and constructed the tours using Pano2VR enhanced with videos and drone images. In three different projects we tested for learning gain after exposure to our VFTs by using identical pre and post VFT questionnaires. Pandemic restrictions forced us to replace our first-year introductory field trips by VFTs.

Key Results

In a final assessment testing for understanding of geological principles based on their usage of these VFTs, the assessment results for first year students showed encouraging signs of learning gains. In the second project we exposed second year students, third year students and Honours students as well as graduate geologists to the basic principles of slope stability in engineering geology. In this case we presented a lecture, followed by a questionnaire on the concepts mentioned, followed by the VFT and again the same questionnaire where we demonstrated a distinct learning gain. Finally, we used a lecture on basic characteristics of sedimentary features in turbidite deposits, enhanced by a comprehensive VFT to prepare Honours level students for a weeklong field trip. Comparing their final report with the final report of the previous year’s group of students also demonstrated learning gain.


While we acknowledge that real-life field work can never be replaced, we have demonstrated that properly designed VFTs can be successfully used to enhance learning at real-life field work.

How to cite: van Bever Donker, J., Marshal, D., Huber, M., Maart, R., Mayekiso, L., Solomon, H., and Mgabisa, N.: The effectiveness of using virtual reality materials in preparing students for geological fieldwork, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-13788,, 2023.