EGU23-14049
https://doi.org/10.5194/egusphere-egu23-14049
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

A 3-D numerical investigation of the impact of buoyant features on subduction dynamics and stress

Lior Suchoy1, Saskia Goes1, Fangqin Chen2, and D. Rhodri Davies2
Lior Suchoy et al.
  • 1Department of Earth Science and Engineering, Imperial College London, London, UK
  • 2Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia

The subduction of positively buoyant features has been suggested to cause flat or shallow dipping slabs, the formation of cusps in trench geometry and periods of reduction or full cessation of arc magmatism. Additionally, recent earthquake data indicates that the subduction of the Hikurangi plateau near New Zealand causes a rotation of intraplate stresses. In this study, we present a series of multi-material 3-D simulations of free subduction to investigate how subduction of buoyant elongated features, or ridges, impact downgoing plate velocities, trench motions, slab morphology and intraplate stress regime. We examine how these parameters are affected by the age of the subducting plate and the relative buoyancy and position of the buoyant ridge. We find that buoyant ridges change slab sinking and trench retreat rates and locally rotate intraplate stresses. These, in turn, modify the evolution of slab morphology at depth and trench shape at the surface, as trench retreat is reduced, or switches to trench advance, where the ridge subducts. These effects depend strongly on downgoing plate age: on young and weak plates, the change in trench shape is more localised than on old and strong plates. We observe slab shallowing around the ridge only in young plates, while the stronger pull by the more negatively buoyant old plates causes slab steepening near the buoyant ridge. Buoyant ridges on old plates which are located near stagnating or advancing regions, typical in wide slabs, modify trench behaviour more strongly than ridges in other regions of the trench. Bending-related intraplate earthquakes are more likely in older plates where higher stress is accumulated and the rotation due to the buoyant ridge is more widespread than for younger plates. The combined effects of buoyant feature location, subducting plate age and overriding plate properties can result in a range of responses: from mainly trench deformation, through local slab shallowing, to the formation of a flat slab, a variation in expressions also observed on Earth.

How to cite: Suchoy, L., Goes, S., Chen, F., and Davies, D. R.: A 3-D numerical investigation of the impact of buoyant features on subduction dynamics and stress, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14049, https://doi.org/10.5194/egusphere-egu23-14049, 2023.