Fast Growing Forests (FGF) to offset Greenhouse Gas (GHG) Emissions
- 1Environmental Sciences and Sustainable Engineering Centre (ESSENCE), Indian Institute of Technology Palakkad, Kanjikode, India (dj@iitpkd.ac.in)
- 2Department of Civil Engineering, Indian Institute of Technology Palakkad, Kanjikode, India
- 3Indian Institute of Science Education and Research, Tirupati, India
- 4Kerala Forest Research Institute, Peechi, Thrissur, Kerala -680653, India
Nature-based solutions (Nbs) are seen as an effective way to mitigate climate change and stabilize the climate of the earth. Here, we report ground measurements of a newly established forest site on the campus of IIT Palakkad, Kerala India (lat = 10.809, lon =76.746). The site (approximately 1600 meter2 ) was previously dominated by fountain grass, which is locally considered to be an invasive species. After land preparation, a new forest utilizing approximately 20 native species of trees was planted following Miyawaki's methodology. Direct measurements of tree diameter at the breast height (tbh) were made to estimate total standing biomass using species specific allometric equations. The standing biomass after two years is estimated to be 3261 kg (5967 kg CO2) over the entire forest area. The total carbon sequestered during the first two years of this forest’s life is sufficient to neutralize carbon emission by a gasoline car driven for a distance of 48909 km or carbon emission by a car running on 100E fuel over a distance of 349355 km. Our work demonstrates that the carbon sequestration rate (18 tons CO2 ha-1 yr-1) by the forest established using the Miyawaki method at our study site is comparable to some of the most productive forests reported in the available literature. Further, our analysis demonstrates that NbS can be made more efficient if spatial land use planning can be optimized to make room for sustainable biomass production for energy and conservation purposes.
How to cite: Jaiswal, D., Surendran, S., Lopus, M., Kushwaha, A., K Chandrabose, A., Geveena, A., Shaji P, S., Nair, S., and Sreejith, K. A.: Fast Growing Forests (FGF) to offset Greenhouse Gas (GHG) Emissions, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14054, https://doi.org/10.5194/egusphere-egu23-14054, 2023.