EGU23-14293
https://doi.org/10.5194/egusphere-egu23-14293
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

3D Venusian Ionosphere model: Venus PCM

Antoine Martinez1, Jean-Yves Chaufray2, and Sébastien Lebonnois1
Antoine Martinez et al.
  • 1Laboratoire de Météorologie Dynamique (LMD/IPSL), CNRS, Paris, France. (antoine.martinez@lmd.ipsl.fr)
  • 2LATMOS, CNRS, Sorbonne Université, Université Versailles St Quentin, Paris, France

For twenty years, a Planetary Climate Model (PCM) has been developed for the Venus atmosphere at “Institut Pierre-Simon Laplace” (IPSL), in collaboration between LMD and LATMOS, from the surface up to 250 km altitude (Lebonnois et al., 2010; 2016; Martinez et al., 2023). Recently, the Venus PCM (former IPSL Venus GCM) has been updated with the addition of photoionization and ion-neutral chemistry to simulate the Venusian ionosphere at altitudes where the photoequilibrium assumption is valid (below 180-200 km at dayside), based on the Martian ionospheric model described in González-Galindo et al., 2013.

By simulating the ionosphere and comparing the results with observations from spacecraft missions, we have been able to better understand the processes at work in the Venusian ionosphere. Here, we will focus on the main ion species (O+, CO2+, O2+, H+, CO+) and on the modeling of the Venusian ionosphere by Venus PCM through the comparison of the ionosphere composition with Pioneer Venus observation (PV-OIMS, PV-OETP). We also explore the effects of the addition of ambipolar diffusion on the vertical density profile of the main ions, based on the work of Chaufray et al., 2014 for the Martian ionosphere.

References:

  • Chaufray, J.-Y., Gonzalez-Galindo, F., Forget, F., Lopez-Valverde, M., Leblanc, F., Modolo, R., Hess, S., Yagi, M., Blelly, P.-L., and Witasse, O. (2014), Three-dimensional Martian ionosphere model: II. Effect of transport processes due to pressure gradients, J. Geophys. Res. Planets, 119, 1614– 1636, doi:10.1002/2013JE004551.
  • Lebonnois, S., Hourdin, F., Eymet, V., Crespin, A., Fournier, R., Forget, F., 2010. Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res. (Planets) 115, 6006. https://doi.org/10.1029/2009JE003458.
  • Lebonnois, S., Sugimoto, N., Gilli, G., 2016. Wave analysis in the atmosphere of Venus below 100-km altitude, simulated by the LMD Venus GCM. Icarus 278, 38–51. https://doi.org/10.1016/j.icarus.2016.06.004.
  • González-Galindo, F., J.-Y. Chaufray, M. A. López-Valverde, G. Gilli, F. Forget, F. Leblanc, R. Modolo, S. Hess, and M. Yagi (2013), Three-dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km, J. Geophys. Res. Planets, 118, 2105–2123, doi:10.1002/jgre.20150.
  • Martinez, A., Lebonnois, S., Millour, E., Pierron, T., Moisan, E., Gilli, G., Lefèvre, F., Exploring the variability of the Venusian thermosphere with the IPSL Venus GCM, Icarus, 2023, 115272, 0019-1035, https://doi.org/10.1016/j.icarus.2022.115272

How to cite: Martinez, A., Chaufray, J.-Y., and Lebonnois, S.: 3D Venusian Ionosphere model: Venus PCM, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14293, https://doi.org/10.5194/egusphere-egu23-14293, 2023.