The devastating 2022 M6.2 Afghanistan earthquake: challenges, processes and implications
- 1Karlsruhe Institute of Technology, Karlsruhe, Germany
- 2University of East Anglia, Norwich, UK
- 3Kabul Polytechnic University, Kabul, Afghanistan
- 4German Research Center for GeoSciences (GFZ), Potsdam, Germany
On June 21th, a Mw6.2 earthquake struck the Afghan-Pakistan-border-region, an area dominated by partitioned deformation related to the India-Asia collision. Despite its moderate size, 1150 deaths were reported, making the event the deadliest earthquake of 2022 so far. We investigate the event’s rupture processes, aiming to understand what made it that fatal. Our InSAR-constrained slip model and regional moment-tensor inversion reveal a sinistral rupture with maximum slip of 1.8 m at 5 km depth on a N20°E striking, sub-vertical fault. Field observations confirm fault location and slip-sense. Based on our analysis and a global comparison, we suggest that not only external factors (e.g. time of the event and building stock) but also fault-specific factors made the event excessively destructive. Surface rupture was favored by the local rock anisotropy (foliation), coinciding with the fault strike. The distribution of Peak Ground Velocity was governed by the sub-vertical fault. The maximum slip was large compared to other events globally and might have resulted in peak-frequencies coinciding with the resonance-frequency of the local one-story buildings. More generally, our study demonstrates the devastating impact of moderate earthquakes, being small enough to be accommodated by many tectonic structures but large enough to cause significant damage.
How to cite: Kufner, S.-K., Bie, L., Gao, Y.-J., Lindner, M., Waizy, H., Kakar, N., and Rietbrock, A.: The devastating 2022 M6.2 Afghanistan earthquake: challenges, processes and implications, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14296, https://doi.org/10.5194/egusphere-egu23-14296, 2023.