EGU23-14487, updated on 20 Apr 2023
https://doi.org/10.5194/egusphere-egu23-14487
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Challenges for achieving clean air - The case of Barcelona (Spain)

Daniel Rodriguez-Rey1, Marc Guevara1, Jan Mateu Armengol1, Alvaro Criado1, Santiago Enciso1, Carles Tena1, Jaime Benavides2, Albert Soret1, Oriol Jorba1, and Carlos Pérez-Garcia Pando1,3
Daniel Rodriguez-Rey et al.
  • 1Barcelona Supercomputing Center, Barcelona, Spain
  • 2Department of Environmental Health Sciences, Mailman School of Public Health, USA.
  • 3ICREA, Catalan Institution for Research and Advanced Studies, Spain

Air pollution affects the economy, the environment, and public health. This is particularly relevant in dense urban areas due to their urban built, high traffic activity, and near-the-source population exposure. In the city of Barcelona, the 40 ug/m3 nitrogen dioxide NO2 annual limit value set up by the 2008/50/EC European Air Quality Directive (AQD) is systematically exceeded in traffic stations mainly due to the contribution of road transport. In the last Urban Mobility Plan (2019-2024), the city hall of Barcelona presented several traffic management strategies aiming to reduce on-road traffic emissions by both renewing and reducing the private motorized transport in the city. These measures include the application of tactical urban actions, green corridors and superblocks along with a Low Emission Zone, which together are expected to reduce the number of private vehicles circulating throughout the city by -25%. In parallel, the Port of Barcelona has recently announced a plan to electrify the docks and reduce emission from hotelling activities by -38%. To properly assess the impact of such measures, the AQD recommends the application of numerical models in combination with monitoring data. Following AQD recommendations, our study runs a coupled transport-emission model able to characterize traffic movement along the city and produce multiple scenarios that quantify the impact of the aforementioned measures on primary emissions. The resulting scenarios are then used to feed a multi-scale air quality modeling system to estimate NO2 concentration values at very high resolution (20m, hourly). To reduce the uncertainty typically associated with modeling results, the estimated values are corrected with a data-fusion methodology using observations from the official monitoring network and several measurement campaigns. Our results show that the implementation of all mobility restrictions and electrification of the Port will allow Barcelona to comply with the current legislated NO2 air quality standards at the traffic monitoring stations, with reductions up to -24.7% and -12 ug/m3. However, the resulting NO2 levels achieved at these locations would still fail to meet the new 2021 WHO guideline (10 ug/m3) and the recent proposal for a revision of the EU AQD (20 ug/m3). Also, despite the estimated NO2 reductions, several areas in the city would still be above the current legal limit of 40 ug/m3, including 16.7% of schools and 19.7% of hospitals and healthcare facilities. All in all, our results suggest the planned measures are steps in the right direction, yet still insufficient to ensure healthy AQ values across the entire city.

How to cite: Rodriguez-Rey, D., Guevara, M., Armengol, J. M., Criado, A., Enciso, S., Tena, C., Benavides, J., Soret, A., Jorba, O., and Pérez-Garcia Pando, C.: Challenges for achieving clean air - The case of Barcelona (Spain), EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14487, https://doi.org/10.5194/egusphere-egu23-14487, 2023.