EGU23-14527, updated on 26 Feb 2023
https://doi.org/10.5194/egusphere-egu23-14527
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Analysis of Climate Change Mitigation and Flood Reduction Effects of Nature-based Solutions

Hoyong Lee, Yujin Kang, Hung Soo Kim, Soojun Kim, and Kyunghun Kim
Hoyong Lee et al.
  • Inha University, Korea, Republic of (hy5890@nate.com)

Due to climate change, rainfall occurs at a higher frequency than the design frequency, and flood damage has occurred in excess of the river design standard. Currently, river management in general is gray infrastructure such as embankments and weirs for irrigation and flood control. However, the river management plan through the gray infrastructure emits carbon dioxide, increasing the occurrence of extreme weather due to climate change and intensifying flood damage, causing a vicious cycle to repeat. Therefore, since the river management method by gray infrastructure cannot be adopted as a sustainable solution, the concept of Nature-based Solutions(NbS), which seeks to solve environmental and social problems through ecosystem services, is attracting attention recently. Therefore, in this study, the flood reduction effect of river management using NbS was quantitatively analyzed for the Hwang River, which is directly downstream of Hapcheon Dam. In addition, using the climate change scenarios of the IPCC 6th Assessment Report, the study tried to confirm the ability to respond to climate change through NbS. We used SSP5-8.5(Shared Socioeconomic Pathways5-8.5) and SSP2-4.5 scenarios for future precipitation, and the design flood discharge was calculated through HEC-HMS. Floodplain excavation and dyke relocation, which are included in the NbS, were applied to the flood risk area of the Huang River. As a result of analyzing the flood level of the river through the unsteady flow analysis of HEC-RAS, it was possible to confirm the effect of reducing the flood level by 5 to 7 cm for each scenario at the confluence of the Nakdong River. The results of this study can be expected to be sufficiently utilized as a basis for use as a management plan through NbS rather than the river management with grey infrastructure.

How to cite: Lee, H., Kang, Y., Kim, H. S., Kim, S., and Kim, K.: Analysis of Climate Change Mitigation and Flood Reduction Effects of Nature-based Solutions, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14527, https://doi.org/10.5194/egusphere-egu23-14527, 2023.