EGU23-14580, updated on 20 Apr 2023
https://doi.org/10.5194/egusphere-egu23-14580
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Strategic litigation on climate change adaptation: The case of public authorities’ liability in flood risk reduction 

Riccardo Luporini1, Marcello Arosio2, Emanuele Sommario1, and Mario Martina2
Riccardo Luporini et al.
  • 1Sant'Anna School of Advanced Studies, Institute of Law, Politics and Development (DIRPOLIS), Italy (riccardo1.luporini@santannapisa.it)
  • 2Scuola Universitaria Superiore IUSS, Pavia, Italy

Strategic climate change litigation is rising on a global scale as a tool to bridge the accountability and enforcement gap that is currently affecting climate change law. The vast majority of strategic climate cases concern mitigation, while adaptation is rarely addressed, and when it is, this is done in a rather residual and vague manner (Setzer and Higham, 2022). However, if it is true that states and corporate actors are lagging behind their emission reduction commitments, at the same time ‘at current rates of adaptation planning and implementation, the adaptation gap will continue to grow’ (IPCC, 2022). Accordingly, once strategic litigation is found to be a suitable tool to advance climate action, opportunities to litigate adaptation strategically should be further explored.

 The role of science in substantiating climate change litigation is very much under the spotlight when it comes to the determination of emission reduction targets, carbon budget and ‘fair shares’ in mitigation cases (BIICL and Sant’Anna, 2021). On the other hand, science does not yet provide accurate indicators of adaptation progress or lack thereof and this contributes to narrowing down opportunities for strategic litigation on adaptation (Berrang-Ford, Biesbroek et al, 2019).

Against this background, this study aims to investigate the role of geosciences in fostering strategic litigation on climate change adaptation. This objective is pursued via a case study. The study builds hypothetical strategic cases concerning public authorities’ liability for flood risk reduction and investigates the potential role of geosciences in such cases. How can geosciences help determine the impacts of climate change on flood risk in a given area and the consequent exposure and vulnerability of specific communities? What does a science-based assessment of given adaptation and flood risk reduction policies and measures look like? To what extent can geosciences determine the activities that public authorities should take to reduce flood risk in a certain area? And, finally, how far can existing commitments in the area of disaster risk reduction and human rights be used in order to distill concrete obligations in terms of adaptation to climate change-induced hazards? The study aims to address these questions by means of an interdisciplinary approach based on combining legal and policy practice with sound geoscience methodology.

References

Joana Setzer and Catherine Higham, ‘Global trends in climate change litigation: 2022 snapshot’, (2022) Grantham Research Institute on Climate Change and the Environment and Centre for Climate Change Economics and Policy, London School of Economics and Political Science

IPCC [Hans-O Pörtner et al. (eds)], Climate Change 2022 Impacts, Adaptation and Vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Summary for Policy Makers

A Holzhausen, R Luporini (Eds), The Role of Science in Climate Change Litigation: International Workshop Report, (July 2021)

Lea Berrang-Ford, Robbert Biesbroek, et al, Tracking global climate change adaptation among governments, Nature Climate Change 9, 440–449 (2019)

How to cite: Luporini, R., Arosio, M., Sommario, E., and Martina, M.: Strategic litigation on climate change adaptation: The case of public authorities’ liability in flood risk reduction , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14580, https://doi.org/10.5194/egusphere-egu23-14580, 2023.