Assessing Resilience Components in Maritime Pine Provenances Grown in Common Gardens
- 1University Of Molise, Department of Biosciences and Territory, Contrada Fonte Lappone, 86090 Pesche, Italy
- 2University Of Molise, Department of Agricultural, Environmental and Food Sciences, Via Francesco De Sanctis, 86100 Campobasso, Italy
Knowledge acquisition on the response of tree species to drought in the Mediterranean hotspot is an important step to guide adaptation strategies to climate change impacts, e.g., assisted migration.We assessed the resilience components - i.e., resistance, recovery, and resilience - to drought
in 2003 in five provenances of maritime pine planted in four common gardens in Sardinia, and analysed the possible influence of climate variables on these indices. The provenances showed differences in growth rate but not in the components of resilience. Among the provenances, Corsica
was the most productive, while Tuscany was the least. One of the two provenances from Sardinia (Limbara) showed good performance in terms of tree growth in the comparatively drier site. The resilience components were influenced by prevailing environmental conditions at the common garden
sites. In the relatively drier sites, trees showed the lowest resistance but the highest recovery values. However, two sites - which had the lowest stand density - showed the opposite trend during the drought year, probably due to moderate thinning. Predictive models showed different probability in
the response of resilience components to climate variables. Resistance and resilience had a similar pattern, both being positively related to temperature, while recovery showed an opposite trend. The models’ results indicate a noticeable adaptation of maritime pine to the drought conditions of Sardinia, though the age factor should be considered as well. Despite only minor differences among provenances being found, environmental conditions and management practices at the common gardens were important in determining tree growth patterns. This study suggests that the provenance of Corsica may provide appropriate material for forest plantations in Mediterranean conditions with mitigation purposes.
How to cite: Lisella, C., Antonucci, S., Santopuoli, G., Marchetti, M., and Tognetti, R.: Assessing Resilience Components in Maritime Pine Provenances Grown in Common Gardens, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14740, https://doi.org/10.5194/egusphere-egu23-14740, 2023.