Urban Flood Resilience Assessment Using Arc GIS Based AHP Approach: A Case Study of Gyor City, Hungary
- 1Department of Geography, Savaria University Centre, Eötvös Loránd University, Szombathely, Hungary (ibrarullah@student.elte.hu)
- 2Geomega Ltd, Budapest, Hungary
Urban flooding has gained great attention in recent years since population in urban areas have become more vulnerable to climatic extremes. The rate of urban flooding has increased around the globe mainly due to climate change. To cope with an increasing flooding issue, there has been an increased effort to manage flood management in urban areas. Similarly in this study, an attempt was made to develop a GIS based map to access flood resilience for the Gyor city. The Gyor city is particularly vulnerable to flooding due to its geographical proximity at the confluence of Raba, Rabca, Mosoni, Marcal and the great Danube rivers. Three elements i.e., hazard, Exposure, and coping capacity with each having pre-determined parameters were selected and processed through Analytic Hierarchy Process (AHP) technique. The product value map was then analyzed in ArcGIS using Specialized Flood Resilience Model (S-FRESI). The resultant product map shows that the majority of Gyorszentivan, Menfocsanak and Ipari Park districts have the very high resilience to floods, while most area of the districts of Kismegyer, Nadorvaros, Sziget, and Belvaros have very low resilience to floods. Similarly, the districts of Bacsa, Saras, Pinnyed, Gyimot and Likocs have most of the areas in medium resilience, while the remaining 6 districts possess areas with low, medium and high resilience. The study is very beneficial for future studies in assessing the areas that are more vulnerable to flooding and have low resilience and can help the decision makers to prepare a better urban flood management system.
How to cite: Ullah, I., Kovacs, G., and Lenner, T.: Urban Flood Resilience Assessment Using Arc GIS Based AHP Approach: A Case Study of Gyor City, Hungary, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-15092, https://doi.org/10.5194/egusphere-egu23-15092, 2023.