EGU23-15243
https://doi.org/10.5194/egusphere-egu23-15243
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Forest Monitoring: Fires and Recovery in Alta Murgia: the MOIRA Project

Sabino Maggi, Maria Patrizia Adamo, Silvana Fuina, Cristina Tarantino, and Saverio Vicario
Sabino Maggi et al.
  • CNR National Research Council, Institute of Atmospheric Research, Bari, Italy (sabino.maggi@cnr.it)

The risk of wildfires has risen significantly in recent years, not just in Europe but around the world. In Italy alone, hundreds of thousands of hectares are burned each year, resulting in deaths, the destruction of forests and loss of biodiversity, and damage to infrastructure and farms. One way to address this issue is through satellite remote sensing, which is a valuable tool for monitoring and managing fires, assessing risks, surveying and evaluating the damage caused by fires and preparing recovery actions.The objective that the Alta Murgia National Park is pursuing with this project is to gather information on fires that have occurred within the Park area, in order to quickly identify affected areas and aid in their perimeter, characterization and control, and to support the preliminary and timely design of forest restoration efforts, as well as the updating of AIB plans according to legal requirements.

The project aims to develop automated satellite monitoring procedures using Landsat and Sentinel2 imagery to assess the health of forested areas and identify and characterize degradation caused by negative events such as forest fires, illegal logging, conversion of forest land to agriculture, and improper use of areas historically affected by fire. A module based on difference in the Normalized Burn Ratio (NBR) index would allow to define the effective perimeter of damage caused by a fire within the larger perimeter defined by firefighting crews. Additionally, a module using various vegetation indices, such as those related to chlorophyll and carotenoids, will be employed to compare vegetation changes across the landscape and over time.

The project also involves using a time series analysis to retrospectively monitor the recovery of vegetation following a critical event, and a Bayesian approach previously developed by the group will be used to estimate expected phenological statistics with associated error. To further understand the recovery process, a single forested site burned in 2020 will be closely monitored with an eddy covariance tower and through repeated floristic surveys.

Lastly, the project aims to establish a pilot low-cost ground-based monitoring and video surveillance system to supplement the existing video surveillance network. This system will focus on monitoring remote or less frequented areas of the park, where installing high-end monitoring stations would not be cost-effective. The system proposed is self-sufficient in terms of power and is capable of performing real-time image analysis over the study area. In the event of a fire or the emission of harmful gases, the system will immediately alert relevant law enforcement agencies.
The current work summarizes the current state of the project and the scientific results obtained so far.

How to cite: Maggi, S., Adamo, M. P., Fuina, S., Tarantino, C., and Vicario, S.: Forest Monitoring: Fires and Recovery in Alta Murgia: the MOIRA Project, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-15243, https://doi.org/10.5194/egusphere-egu23-15243, 2023.

Supplementary materials

Supplementary material file