EGU23-15746, updated on 02 Jan 2024
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Simulating oceanic mesoscale eddy dynamics: A comparison of novel parameterizations and energy diagnostics and their impact on the global ocean circulation

Stephan Juricke1,2, Sergey Danilov1,2, Marcel Oliver1,3, Anton Kutsenko3, and Kai Bellinghausen2
Stephan Juricke et al.
  • 1Jacobs University Bremen, Germany
  • 2Alfred Wegener Institute, Helmholtz centre for polar and marine research
  • 3Katholische Universität Eichstätt-Ingolstadt

In this study, we present a variety of parameterizations for simulating ocean eddy dynamics including novel viscous and kinetic energy backscatter closures. Their effect is analyzed using new diagnostics that allow for application on unstructured meshes.

Ocean mesoscale eddy dynamics play a crucial role for large-scale ocean currents as well as for the variability in the ocean and climate. The interactions between eddies and the mean flow affect strength, position and variations of ocean currents. Mesoscale eddies have a substantial impact on oceanic heat transport and the coupling between the atmosphere and ocean. However, at so-called eddy-permitting model resolutions around ¼°, eddy kinetic energy and variability is often substantially underestimated due to excessive dissipation of energy. Despite ever-increasing model resolutions, eddy-permitting simulations will still be used in uncoupled and coupled climate and Earth system simulations for years to come.

To improve the presentation of eddy dynamics in such resolution regimes, we present and systematically compare a set of viscous and kinetic energy backscatter parameterization with different complexity. These schemes are implemented in the unstructured grid, finite volume ocean model FESOM2 and tested in both idealized channel and global ocean simulations. We show that kinetic energy backscatter and adjusted viscosity parameterizations can alleviate some of the substantial eddy related biases, for example biases in sea surface height variability, mean currents and in water mass properties. We then further analyze the effect of these schemes on energy and dissipation spectra using new diagnostics that can be extended to the unstructured grid used by FESOM2. The rigorous intercomparison allows to make informed decisions on which schemes are the most suitable for a given application, considering the complexity of the schemes, their computational costs, their adaptability to various model resolutions and any simulation improvements related to a specific scheme. We will show that novel viscous and kinetic energy backscatter schemes outperform previously used, classical viscous closures. Furthermore, when compared to higher resolution simulations, they are computationally less expensive but achieve similar results.

How to cite: Juricke, S., Danilov, S., Oliver, M., Kutsenko, A., and Bellinghausen, K.: Simulating oceanic mesoscale eddy dynamics: A comparison of novel parameterizations and energy diagnostics and their impact on the global ocean circulation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15746,, 2023.