EGU23-15813
https://doi.org/10.5194/egusphere-egu23-15813
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Delayed Effects of ENSO and Indian Ocean Dipole on the ensuing-summer extreme precipitation over Yangtze River Valley

Yucong Lin1,2, Silvio Gualdi2, and Enrico Scoccimarro2
Yucong Lin et al.
  • 1Ca'Foscari University of Venice, Venice, Italy
  • 2Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna,Italy

Yangtze River Valley (YRV) locates in Southeast China, is home to about a third of the population in China. Summer extreme precipitation in Yangtze River can lead to extensive social problems and loss of lives. Understanding the characteristics of extreme precipitation and identifying the possible driving factors can increase our ability to plan for, manage and respond to related extreme events over the YRV. This study applies ERA5 data during the period of 1950~2021 to examine the possible influence of ENSO and the sea surface temperature (SST) variability over the Indian Ocean domain on the interannual variability of the extreme precipitation over the YRV. The related physical processes that link the summer Yangtze River extreme precipitation, ENSO and Indian Ocean Dipole (IOD) are investigated.

Using composites analysis and Pearson correlation method, we found that both ENSO and IOD have delayed effects on summer extreme precipitation over the YRV, warm ENSO events and positive IOD phases are in favor of increased extreme precipitation in the subsequent summers, and vice versa. The anomalous anticyclone over the western Pacific Ocean (WNPAC) is the key factor in altering the inter-annual variability of extreme precipitation over the YRV. By comparing the extreme precipitation composites with different ENSO-IOD coupling events, we found that the signals of enhanced extreme precipitation are significant when El Niño occurs with a positive phase of IOD in the previous winter. The results based on the large circulation patterns also support that IOD plays an essential role in modulating the WNPAC. Our research highlights the need for a fundamental exploration into air-sea interactions over the tropical Pacific associate to ENSO-IOD coupling modes, our understanding in learning the impacts of these modes of variability on precipitation extremes over the YRV will contribute to improve the predictability of extreme events over this region.

Keywords:

Yangtze River Valley, extreme precipitation, ENSO, IOD, western North Pacific anomalous anticyclone 

How to cite: Lin, Y., Gualdi, S., and Scoccimarro, E.: Delayed Effects of ENSO and Indian Ocean Dipole on the ensuing-summer extreme precipitation over Yangtze River Valley, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-15813, https://doi.org/10.5194/egusphere-egu23-15813, 2023.