Yield function of the DOSimetry TELescope (DOSTEL) count and dose rates aboard an aircraft
- Christian-Albrechts Universität Kiel, IEAP, HAP, Germany (romaneehsen@physik.uni-kiel.de)
The Earth is continuously exposed to galactic cosmic rays. The magnetized solar wind in the heliosphere and the Earth's magnetic field alters the flux of these particles. If cosmic rays hit the atmosphere, they can form secondary particles. The total flux measured within the atmosphere depends on the atmospheric density above the observer. Therefore, the ability of a particle to approach an aircraft depends on its energy, the altitude, and the position of the plane. The cutoff rigidity describes the latter.
The radiation detector of the detector system NAVIDOS (NAVIgation DOSimetry) is the DOSimetry Telescope (DOSTEL), measuring the count and dose rates in two semiconductor detectors. From 2008 to 2011, two instruments were installed in two aircraft. First, we corrected the data for pressure variation by normalizing them to one flight level and determined their dependence on the cutoff rigidity by fitting a Dorman function to the observation. The latter was used to compute the yield function, which describes the ratio of incoming primary cosmic rays, approximated by a force field solution, to the measured count and dose rate for a particular instrument. As for neutron monitors, the sensitivity increases substantially above a rigidity of about 1 GV.
We received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 870405.
How to cite: Romaneehsen, L., Burmeister, S., Giese, H., Heber, B., and Herbst, K.: Yield function of the DOSimetry TELescope (DOSTEL) count and dose rates aboard an aircraft, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-15980, https://doi.org/10.5194/egusphere-egu23-15980, 2023.