High-resolution mapping of nitrogen oxides emissions in US large cities from TROPOMI retrievals of tropospheric nitrogen dioxide columns
- 1Morgan State University, Goddard Earth Sciences Technology and Research (GESTAR) II, United States of America (fei.liu@nasa.gov)
- 2NASA Goddard Space Flight Center, Greenbelt, United States of America
- 3Max-Planck-Institut für Chemie, Mainz, Germany
- 4Science Systems and Applications Inc., Lanham, United States of America
- 5Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, United States of America
- 6Center for Spatial Information Science and Systems, George Mason University, Fairfax, United States of America
We map high-resolution nitrogen oxides (NOx) emissions in US cities from the retrieved TROPOspheric Monitoring Instrument (TROPOMI) tropospheric nitrogen dioxide (NO2) columns. A new database of gridded emissions at a horizontal spatial resolution of 0.05°×0.05° has been developed using our newly-developed CTM-Independent SATellite-derived Emission estimation Algorithm for Mixed-sources (MISATEAM). We validate the accuracy of MISATEAM using synthetic NO2 observations derived from the NASA-Unified Weather Research and Forecasting (NU-WRF) model at a horizontal spatial resolution of 4 km × 4 km. The validation results demonstrate the excellent agreement between the inferred emissions magnitudes and the NU-WRF given ones with a correlation coefficient (R) of 0.99 and a normalized mean bias (NMB) of -0.08. They also show a consistent spatial pattern with R of 0.88 ± 0.06 for all investigated cities when comparing inferred and given emissions at grid level. The TROPOMI-based database derived in this study includes annual emission maps for 39 US large cities from 2018 to 2021. While there is a good agreement with national emission inventory (NEI) in general, there are noticeable differences in spatial pattern in some cases. The satellite-derived spatiotemporal patterns of NOx emissions complement information difficult to capture in the conventional emission inventories compiled with “bottom-up” methods by suggesting the misallocation of emissions and/or missing sources. We expect to extend the database globally and also include estimates based on NO2 observations from OMI to provide a longer time record. The method could also be applied to data from future geostationary satellites, such as Geostationary Environment Monitoring Spectrometer (GEMS) or the Tropospheric Emissions: Monitoring Pollution (TEMPO) instrument, to provide diurnal variations in NOx emissions.
How to cite: Liu, F., Beirle, S., Joiner, J., Choi, S., Tao, Z., Knowland, K. E., Smith, S., Tong, D. Q., and Wagner, T.: High-resolution mapping of nitrogen oxides emissions in US large cities from TROPOMI retrievals of tropospheric nitrogen dioxide columns, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-1606, https://doi.org/10.5194/egusphere-egu23-1606, 2023.