A comparison of methods for determining the number of classes in unsupervised classification of climate models
- 1British Antarctic Survey, Cambridge, United Kingdom (emmomp@bas.ac.uk)
- 2Department of Physics, University of Toronto, Toronto, Canada
Unsupervised classification is becoming an increasingly common method to objectively identify coherent structures within both observed and modelled climate data. However, the user must choose the number of classes to fit in advance. Typically, a combination of statistical methods and expertise is used to choose the appropriate number of classes for a given study, however it may not be possible to identify a single ‘optimal’ number of classes. In this
work we present a heuristic method for determining the number of classes unambiguously for modelled data where more than one ensemble member is available. This method requires robustness in the class definition between simulated ensembles of the system of interest. For demonstration, we apply this to the clustering of Southern Ocean potential temperatures in a CMIP6 climate model, and compare with other common criteria such as Bayesian Information Criterion (BIC) and the Silhouette Score.
How to cite: Boland, E., Jones, D., and Atkinson, E.: A comparison of methods for determining the number of classes in unsupervised classification of climate models, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-16163, https://doi.org/10.5194/egusphere-egu23-16163, 2023.