EGU23-16199
https://doi.org/10.5194/egusphere-egu23-16199
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Assessing distribution and pattern of the earthquake-related deformation caused by large continental normal earthquakes using optical image correlation

Lucia Andreuttiova1, James Hollingsworth2, Pieter Vermeesch1, and Tom Mitchell1
Lucia Andreuttiova et al.
  • 1University College London, Department of Earth Sciences, London, United Kingdom of Great Britain – England, Scotland, Wales (lucia.andreuttiova.16@ucl.ac.uk)
  • 2Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France

Earthquakes on normal faults in the continental setting are relatively uncommon. The scarcity of surface-rupturing events underpins an absence of surface displacement measurements. It is a common practice to use surface offset as a proxy to understand the fault structure at depth. Hence, the lack of comprehensive surface data impedes the subsurface reconstruction of seismogenic normal faults and prohibits the thorough assessment of earthquake hazards. To supplement the available surface displacement measurements and to make statistically significant inferences, we apply optical image correlation (OIC) methods to historical images from three large continental normal earthquakes in the western United States (1954 Dixie Valley (Mw 6.8) - Fairview Peak (Mw 7.1) earthquake sequence, the 1959 Mw 7.2 Hebgen Lake earthquake and the 1983 Mw 6.9 Borah Peak earthquake). The results of this study are displacement maps with three components of deformation from which we extract high-resolution 3-d measurements everywhere along the surface rupture. 

 

The high-resolution 3-d data are used to quantify the magnitude and direction of the earthquake-related offset, the percentage of off-fault damage as well as the width of the fault zone. These parameters represent the fault maturity, geometric complexity and subsurface structure of the fault. Our observations confirm behaviours previously observed along strike-slip faults (e.g. magnitude of off-fault deformation is proportional to the rupture complexity). In addition, a comparative assessment of the results from the three study areas demonstrates that features such as excess slip detected close to the fault scarp are not unique and can be found along multiple dip-slip faults. Consequently, this study documents the variation of the quantifiable parameters along the normal faults. It suggests that while some parameters are a universal reflection of the fault characteristics, others vary according to the geology or topography in the area and should not be accepted without further investigation.

How to cite: Andreuttiova, L., Hollingsworth, J., Vermeesch, P., and Mitchell, T.: Assessing distribution and pattern of the earthquake-related deformation caused by large continental normal earthquakes using optical image correlation, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-16199, https://doi.org/10.5194/egusphere-egu23-16199, 2023.