EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

The UK’s NCAS Data Project: establishing transparent observational data workflows from field to user

Graham Parton1, Barbara Brooks2, Ag Stephens1, and Wendy Garland1
Graham Parton et al.
  • 1Centre for Environmental Data Analysis, STFC Ruthford Appleton Laboratory, UK (
  • 2National Centre for Atmospheric Science, University of Leeds, UK (

Within the UK the National Centre for Atmospheric Science (NCAS) operates a suite of observational instruments for atmospheric dynamics, chemistry and composition studies. These are principally made available through two facilities: the Atmospheric Measurement and Observations Facility (AMOF) and the Facility for Airborne Atmospheric Measurements (FAAM). Between these two facilities instrumentation can be on either campaign or long-term deployed in diverse environments (from polar to maritime; surface to high altitude), on a range of platforms (aircraft, ships) or dedicated atmospheric observatories.

The wide range of instruments, spanning an operational time period from the mid 1990s to present, has traditionally been orientated to specific communities, resulting in a plethora of different operational practices, data standards and workflows. The resulting data management and usage challenges have been further exacerbated over time by changes of staff, instruments and end-user communities and their requirements. This has been accompanied by the wider end-user community seeking greater access to and improved use of the data, with necessary associated improvements in data production to ensure transparency, quality, veracity and, thus, overall reproducibility. Additionally, these enhancemed workflows further ensure FAIR data outputs, widening long-term re-use of the data. 

Seeking to address these challenges in a more harmonious approach across the range of AMOF and FAAM facilities, NCAS established the NCAS Data Project in 2018 bringing together key players in the data workflows to break down barriers and common standards and procedures through improved dialogue. The resulting NCAS ‘Data Pyramid’ approach, brings together representatives from the data provider, data archive and end-user communities alongside supporting software engineers within a common framework that enables cross-working between all partners. This has lead to new data standards and workflows being established to ensure 3 key objectives: 1) capturing and flow of the necessary metadata to automate data flows and quality control as much as possible in a timely fashion ‘from field to end-user’; 2) enhanced transparency and traceability in data production via linked externally visible documentation, calibration and code repositories; and, 3) data products meeting end-user requirements in terms of their content and established quality control. Finally, data workflows are further enhanced thanks to scriptable conformance checking throughout the data production lifecycle, built on the controlled data product and metadata standards.

Thus, through the established workflows of the NCAS Data Project, the necessary details are captured and conveyed by both internal file-level and catalogue-level metadata to ensure that all three corners of the triangle of reproducibility, quality information, and provenance are able to be achieved in combination.

How to cite: Parton, G., Brooks, B., Stephens, A., and Garland, W.: The UK’s NCAS Data Project: establishing transparent observational data workflows from field to user, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-16288,, 2023.