EGU23-16597, updated on 09 Jan 2024
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Global Decadal Sea Surface Height Forecast with Conformal Prediction

Nils Lehmann1, Jonathan Bamber1,2, and Xiaoxiang Zhu1
Nils Lehmann et al.
  • 1Technical University of Munich, Munich, Germany (
  • 2University of Bristol

One of the many ways in which anthropogenic climate change impacts our planet is
rising sea levels. The rate of sea level rise (SLR) across the oceans is,
however, not uniform in space or time and is influenced by a complex interplay
of ocean dynamics, heat uptake, and surface forcing. As a consequence,
short-term (years to a decade) regional SLR patterns are difficult to model
using conventional deterministic approaches. For example, the latest climate
model projections (called CMIP6) show some agreement in the globally integrated
rate of SLR but poor agreement when it comes to spatially-resolved
patterns. However, such forecasts are valuable for adaptation planning in
coastal areas and for protecting low lying assets.
Rather than a deterministic modeling approach, here we explore the possibility
of exploiting the high quality satellite altimeter derived record of sea surface
height variations, which cover the global oceans outside of ice-infested waters
over a period of 30 years. Alongside this rich and unique satellite record,
several data-driven models have shown tremendous potential for various
applications in Earth System science. We explore several data-driven deep
learning approaches for sea surface height forecasts over multi-annual to
decadal time frames. A limitation of some machine learning approaches is the
lack of any kind of uncertainty quantification, which is problematic for
applications where actionable evidence is sought. As a consequence, we equip
our models with a rigorous measure of uncertainty, namely conformal prediction which
is a model and dataset agnostic method that provides calibrated predictive
uncertainty with proven coverage guarantees. Based on a 30-year satellite
altimetry record and auxiliary climate forcing data from reanalysis such as
ERA5, we demonstrate that our methodology is a viable and attractive alternative
for decadal sea surface height forecasts.

How to cite: Lehmann, N., Bamber, J., and Zhu, X.: Global Decadal Sea Surface Height Forecast with Conformal Prediction, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16597,, 2023.