EGU23-16670
https://doi.org/10.5194/egusphere-egu23-16670
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

EURO1k: A high-resolution European weather model developed by Meteomatics

Julie Thérèse Pasquier, Johannes Rausch, Alexander Stauch, and Martin Fengler
Julie Thérèse Pasquier et al.
  • Meteomatics, St. Gallen, Switzerland (jpasquier@meteomatics.com)

Accurate and precise weather forecasting is essential for a wide range of applications and industries, from agriculture to transportation to renewable energy. However, current weather models often struggle to represent the weather accurately due to limitations in spatial resolution. Global models with broad resolution are unable to represent small-scale weather features, such as convective thunderstorms or local wind patterns, while regional high resolution models are highly dependent on boundary conditions and typically provide forecasts for a small domain. To fill this gap, Meteomatics has developed the EURO1k model, the first pan-European weather model with a 1km2 resolution.

 

The EURO1k model consists of approximately 20 million grid points and is run 24 times per day, with a forecast horizon of 24 hours. It is based on the WRF (Weather Research and Forecasting) model and uses global ECMWF-IFS model data for boundary conditions. In addition to standard data sources such as weather stations, radar and satellite data, and radiosondes, the EURO1k model also ingests data from a network of Meteodrones, small unmanned aircraft systems (UAS) developed by Meteomatics which collect vertical atmospheric profiles up to 6000m in altitude. The high resolution of the EURO1k model allows it to accurately represent small-scale weather patterns, resulting in highly accurate and precise forecasts. This is evident in verifications against weather station observations, which show a very good agreement between model output and a range of weather variables including wind, temperature, and radiation.

 

Statistical analyses of EURO1k model output against observations from 5000 weather stations in Europe demonstrate better accuracy compared to other global and regional models. This has important implications for industry and the public. The EURO1k model can improve the forecasting of extreme weather events, allowing for better preparation and response. It can also enhance the prediction of renewable energy production, which depends on weather conditions. This increases the cost efficiency of renewable energies and help to reduce CO2 emissions. And, most importantly, it provides a more accurate and reliable weather forecast for communities across Europe. Overall, the EURO1k model represents a major advance in numerical weather prediction, bringing improved understanding and forecasting of the weather to a wide range of users.

How to cite: Pasquier, J. T., Rausch, J., Stauch, A., and Fengler, M.: EURO1k: A high-resolution European weather model developed by Meteomatics, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-16670, https://doi.org/10.5194/egusphere-egu23-16670, 2023.