The effects of coarse dust in the models and observations in the dust source regions
- KAUST, Physical Sciences and Engineering, Thuwal, Saudi Arabia (georgiy.stenchikov@kaust.edu.sa)
In dust source regions, such as the Middle East, dust is a major environmental factor affecting climate, air quality, and human health. Dust also hampers solar energy harvesting by weakening downward solar flux and depositing on optically active surfaces of solar energy devices. In this study, we combine fine-resolution WRF-Chem simulations with size-segregated measurements of dust deposition to quantify the contribution of coarse (2.5 um < r < 10 um) and giant (10 um <r < 100 um) dust particles in aerosols radiative forcing and deposition rates. Most up-to-date models do not represent the particles with r > 10 um. The absence of large particles in the models does not significantly affect the radiative fluxes, as their contribution to AOD is relatively small, but they comprise the most dust-deposited mass. We found that dust deposition rates calculated in WRF-Chem and reanalysis products are 2-3 times smaller than the observed. However, the deposition rate of particulate matter with a diameter smaller than 10 um (PM10) is in good agreement between the models and observations. In the Middle East, fine dust particles are predominantly responsible for the significant reduction (> 5 %) of the downward solar flux hampering solar energy production. Still, dust-deposited mass, primarily associated with coarse particles, causes about a 2% loss of PV panel efficiency daily due to soiling. As was suggested previously, WRF-Chem, like many other models, tends to overestimate the atmospheric concentration of fine (r < 2.5 um) dust particles and underestimate the concentration of coarse particles. As seen from the comparison of the size distribution of deposited dust in simulations and observations, the latter is caused not as much by too fast deposition of large particles but due to underestimating their emission in the models.
How to cite: Stenchikov, G., Mostamandi, S., Shevchenko, I., and Ukhov, A.: The effects of coarse dust in the models and observations in the dust source regions, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-1682, https://doi.org/10.5194/egusphere-egu23-1682, 2023.