EGU23-16864, updated on 10 Jan 2024
https://doi.org/10.5194/egusphere-egu23-16864
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Data fusion in civil engineering: personal experience, vision and historical considerations

Andrea Benedetto
Andrea Benedetto
  • Department of Engineering, University ROMA TRE, Rome, Italy (andrea.benedetto@uniroma3.it)

Approximately eight years ago, after a research activity that I started in the nineties on the application of GPR and, later, of NDTs to civil engineering, I realized that no technology can be considered as self standing. This is the consequence of the high complexity related to the civil engineering works and to the highly unpredictable impacts of ordinary processes and exceptional natural events. At the beginning of this century it was clear that a reliable and comprehensive monitoring of a phenomenon affecting bridges, tunnels, structures, or any civil engineering work is possible only by integrating data from different sources.

GPR was at that time a very promising technology, and many investigated in this field measuring e.g. pavement deformation, asphalt moisture, ballast degradation, also the mechanical properties of materials. The accurate outcomes represent a great step forward for the science in this sector, but the final results demonstrated to be partial, because the approach failed under a holistic perspective.

So, in the second decade of 2000, the need of a novel paradigm for investigation raised, in order not only to identify and quantify the problem, but also to diagnose its causes.

It was the stimulus to fuse data from different NDTs, under the assumption that information A and B give much more than A+B. It means that one information (A) can be explanatory of one or more characters contained in a second (B) that cannot be inferred by the knowledge of only one single standing information (B).

Based on this I decided, with very high level international colleagues, to establish a new session at EGU. It was the 2018. Today the sixth edition!

During these years a number ranging from 80 to 120 of researchers took part to each session. Also the number of countries involved is impressive, ranging for each session from 10 to 17. The institutions ranged from 36 to 50.

The number of contributions presented in the five editions is 141.

After 2018 we have seen several special issues of prominent journals were dedicated to data fusion. Recently, beyond the typical technologies as GPR, UT, ERT, a great attention was given to Lidar, Satellite and UAV.

Data fusion was also directed to other interesting and promising fields as archaeology, agriculture, urban planning, only to cite a few.

I would like to underline that this great interest started in Europe and in USA, but actually the geographical coverage is much wider and it includes at a same level also Asiatic and emerging countries.

There is now a new frontier that has to be. My vision is that this holistic approach can be used to develop an innovative immersive environment through the integration in augmented reality platforms on which a digital twin can be generated and dynamically upgraded through an adaptive interface, as well as using AI and machine learning paradigms.

How to cite: Benedetto, A.: Data fusion in civil engineering: personal experience, vision and historical considerations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16864, https://doi.org/10.5194/egusphere-egu23-16864, 2023.