Characterization of Lagged Compound Floods and Droughts Under Climate Change
- Western University, Civil and Environmental Engineering, Canada (mnajafi7@uwo.ca)
Increases in the frequency and intensity of hydroclimatic extremes (floods and droughts) and their temporal swings have led to severe consequences in many regions around the world. Traditionally, these contrasting extremes have been assessed in isolation without considering their spatial and temporal interactions, implications for infrastructure design and management and the overall compounding risks. Nonetheless, understanding the changing characteristics of such lagged compound events is critical to developing effective mitigation and adaptation strategies. In this study, we propose a novel framework to identify and characterize the hydroclimatic whiplash events and investigate their spatiotemporal projections under climate change. Multiple hydroclimate variables such as precipitation, evapotranspiration, soil moisture, runoff, and streamflow are used to identify dry and wet extremes and their transitions. Different scenarios for nonstationary hydrological swings between flood and drought are investigated based on streamflow data. Meteorological wet and dry conditions are investigated using standardized drought indices calculated based on the downscaled and statistically bias-adjusted simulations of CMIP5 for 1.5°C-4 °C global warming levels over three major river basins in northwest North America. Further, three dry-wet spell indices estimated by precipitation, soil moisture, and runoff simulations are merged into an integrated indicator to provide a thorough perspective on the changing risks of such transitions across North America using the Canadian Regional Climate Model version 4 Large Ensemble. We apply an ensemble pooling approach to enhance the sample size for index estimation, which enables projecting the characteristics more robustly. Frequency, intensity, transition time, spatial fraction, aggregation index, and seasonality are quantified for each warming period and compared with those of the baseline period to investigate their projected changes. In addition, we assess the contribution of external forcing and internal variability to the historical and projected changes of the lagged compound events. The results of this study suggest that hydroclimatic whiplash across North America is expected to become more frequent and intensified in a warmer climate. Projections show overall increases in the frequency of hydroclimatic whiplash and a decrease in the corresponding transition times as the climate gets warmer. In addition, the magnitude, intensity, and duration of wet and dry components of such lagged compound events are projected to increase based on the analyses with streamflow. Increasing trends of spatial fraction and spatial aggregation during both transitions between dry and wet spells also imply higher risks and future challenges for water resources management. The findings of this study support the necessity of developing appropriate mitigation measures targeting lagged compound floods and droughts that can lead to severe environmental and socio-economic disasters in North America.
How to cite: Najafi, M. R., Na, W., Rezvani, R., and Rahimi Movaghar, M.: Characterization of Lagged Compound Floods and Droughts Under Climate Change, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-16867, https://doi.org/10.5194/egusphere-egu23-16867, 2023.