EGU23-16886
https://doi.org/10.5194/egusphere-egu23-16886
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Earth Networks Lightning System Update

Elizabeth DiGangi1, Jeff Lapierre1, Yanan Zhu1, and Michael Stock2
Elizabeth DiGangi et al.
  • 1AEM, Research and Development, United States of America
  • 2CIWRO/OU/NSSL, United States of America

Global lightning location data has long been a critical tool for lightning research and safety. The Earth Networks Total Lightning Network (TLN) incorporates advanced lightning location technology delivering competitive lightning detection efficiency, location accuracy, and classification (intracloud vs cloud-to-ground). It consists of over 1800 wideband sensors deployed in 40+ countries to detect lightning and generate real-time localized storm alerts. TLN is constantly evolving through network expansion, as well as hardware and software development. In this presentation, we will cover some of the recent advances to the TLN hardware and processor. The new TLN sensor has been redesigned to use a dipole sensing element to help reduce the requirements of a strong ground. These new sensors are currently being used operationally and produce comparable waveforms to the previous monopole antenna. New upgrades to the lightning location algorithm have increased the detection efficiency, location accuracy, and classification accuracy of the network. Globally, TLN is locating approximately 50% more pulses than it was before. In moderately remote regions of the world, performance gains can be higher. TLN continues to use data from the World Wide Lightning Location Network (WWLLN), enhanced via raw signals from approximately 200 TLN sensors, to locate lightning in extremely remote regions like the deep oceans. However, how WWLLN data is incorporated into the TLN feed has changed, leading to significantly reduced false alarm rates in some regions. Location accuracy was improved by developing a new propagation model for signals produced by lightning, resulting in a reduction in location error by as much as a factor of 2. As a result of the improved location accuracy, as well as enhancements to the false alarms rates, there is improved clustering of lightning, which directly impacts downstream products such as lightning alerting and Dangerous Thunderstorm Alerts.

How to cite: DiGangi, E., Lapierre, J., Zhu, Y., and Stock, M.: Earth Networks Lightning System Update, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-16886, https://doi.org/10.5194/egusphere-egu23-16886, 2023.