Thermal penetration evidence recorded since 1999 in the deep Tyrrhenian Sea (Mediterranean Sea)
- 1ENEA - Centro Ricerche Ambiente Marino Santa Teresa, Via S. Teresa,19032 Lerici, La Spezia, Italy
- 2Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
The warming trend is already well known for the Mediterranean region, which is considered a climate hotspot warming 20 % faster than the global average. Every year, the Mediterranean Sea reaches new records for seawater warming, and year after year, this heat is penetrating deeper and deeper into the sea. New temporal and spatial evidence of this thermal penetration were depicted in the Tyrrhenian Sea thanks to a twenty-year continuous XBT monitoring. This work aims at dealing with the Tyrrhenian Sea sub-basin dynamics and processes. In particular, the mechanisms responsible for penetration of warming signal down to the deep layers (1800 m). What can hinder or exacerbate this spread and what areas are mostly affected by mechanisms of propagation and why?
It’s well known that the seafloor's uneven topography and bottom roughness influences ocean circulation in two basic ways: first, it steers local vorticity flows; second, it provides barriers that prevent deep waters from mixing, except within deep passageways and straits that connect ocean basins or in hydraulically controlled overflow regions. The ways in which the warm signal entering from the south spreads rapidly northward affecting the entire Tyrrhenian Sea basin will be depicted, also considering its sub-basin peculiarities, such as features of the wind-driven surface circulation, strong stratification, and related mixing processes along the entire water column as well as its variability.
How to cite: Artale, V., Ciuffardi, T., LoBue, N., Raiteri, G., and Reseghetti, F.: Thermal penetration evidence recorded since 1999 in the deep Tyrrhenian Sea (Mediterranean Sea), EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-17193, https://doi.org/10.5194/egusphere-egu23-17193, 2023.