EGU23-17433
https://doi.org/10.5194/egusphere-egu23-17433
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Thermohydrochemical Model to Identify the Impact of Bleed Flow on Calcite Scaling in a Standing Column Well

Léo Cerclet, Benoît Courcelles, and Philippe Pasquier
Léo Cerclet et al.
  • Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, P.O. Box 6079 Centre-Ville, Montréal, Québec, Canada H3C 3A7

The interest towards standing column well (SCW) is increasing due to their higher thermal efficiency and a lower initial construction cost compared to conventional vertical ground heat exchangers. The SCW pumps and reinjects the groundwater inside the same well. They are usually coupled with an injected well to discharge a portion of the pumped groundwater, an operation called “bleed”, to increase punctually the thermal capacity of the system. Since groundwater is the heat carrier fluid, clogging issues can develop if detrimental conditions are locally present. The most common issue for hard water is calcite scaling. The impact of SCW on calcite precipitation had already been studied with a thermohydrochemical model and field experiments. However, it still lacks a reactive thermohydrochemical model calibrated with field acquired data. Once calibrated, this model could help defining the best strategy to avoid calcite precipitation.
A full-scale SCW was operated with a geothermal mobile laboratory for 70 consecutive days. A fractured zone intersects the SCW close to the surface. The operation corresponded to a heat injection with different flow rate sequences. In addition, a groundwater treatment unit installed in the laboratory was used to test different treatment sequences. During this experiment, 20 groundwater samples were collected and analyzed. Those analyses focused on the physico-chemical parameters and the major ions. A reactive thermohydrochermical model was developed in the Comsol Multiphysics environment. This model includes a complex geometry, groundwater flow, heat transfer, and reactive solute transport. The reactive solute transport is composed of two parts; the transport and kinetics model for three primary species and the chemical equilibrium of nine secondary species of calcite reaction. The calibration is achieved by imposing operational parameters as input variables for hydraulic and thermal model as well as the initial concentration.
The calibration identified the presence of CO2 degassing. The parameter with more influence on ion calcium concentration is bleed flow. In fact, bleed operation generates a groundwater flow of native groundwater toward the SCW. During this operation, the fracture contributed up to 33 % of the total calcium flux coming to the SCW. This flux is a convective flux. The concentration of total calcium transported by the fracture is closed to the initial concentration. As a consequence, the ion calcium concentration stabilized near the initial state. Thus, the groundwater treatment performance is minimized. The saturated index of the calcite is above zero. On the opposite side, when bleed is not activated, the groundwater is recycled is the SCW. As a results, the treatment unit is responsible of the observed decreases of the ion calcium concentration. The saturated index decreases below zero after five days. Also, when the total calcium concentration decreases in the SCW, a diffusive flux emerged into the fracture.
In conclusion, this study highlights the alteration of the solute transport as a function of the bleed operation. The type of flux depends on bleed and the treatment. In addition, the treatment of groundwater is unnecessary when bleed is activated.

How to cite: Cerclet, L., Courcelles, B., and Pasquier, P.: Thermohydrochemical Model to Identify the Impact of Bleed Flow on Calcite Scaling in a Standing Column Well, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-17433, https://doi.org/10.5194/egusphere-egu23-17433, 2023.