EGU23-17553
https://doi.org/10.5194/egusphere-egu23-17553
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Urban textures and flood hazard impacts from 2008 to 2018 in Nairobi, Kenya

Bernard Majani1, Bruce D Malamud1,2, and James Millington1
Bernard Majani et al.
  • 1Department of Geography, King’s College London, London, UK
  • 2Institute of Hazard, Risk and Resilience, and Department of Geography, Durham University, Durham, UK

This research develops a methodology to examine the change over time of urban textures for Nairobi in relation to flood hazard impact on infrastructure. We use three Landsat 7 (30 m resolution) images of Nairobi (2008, 2013, 2018). ‘Urban textures’ are the spatial distribution, shape and relative arrangement of urban elements such as green spaces, trees, roads and height of buildings and their geometry in a given urban city. Here, revising Stewart and Oke’s classifications for built-up areas and land cover types, we classify each of the three Landsat images into 14 urban textures using maximum likelihood under supervised classification. The building structure types were then examined using local knowledge, YouTube videos, Google Street View and ground truthing. We find that from 2008 to 2018 the urban textures with the largest total increases in area were compact mid-rise by 49.9km2 (6.9%) and compact high-rise by 11.3 km2 (1.5%). In contrast, the compact low-rise residential urban texture decreased greatly (29.2 km2). This suggests that for non-industrial land uses, Nairobi has grown upward. Accuracy assessments for the 2008 [2018] map were 83.6% [87.9%] with 95% confidence interval of 75.4–90.0% [80.6–93.2%] and kappa statistic 0.777 [0.834]. We then examine the spatial temporal change of intensive (high severity – low frequency) and extensive (low severity – high frequency) flood hazard events in terms of pattern, trend and impact in relation to rainfall, elevation, and urban textures. We find that urban textures for 2018 have reduced area coverage of the urban texture lightweight low-rise, having partly changed to compact midrise. The impact of change in land use through the development of urban areas greatly affects flooding and impacts in terms of severity. Flooding is more prevalent close to the major rivers in Nairobi, some of which occur in the non-informal settlements. Flood water flows from the higher areas of Ngong and Kikuyu towards the town centre, Nairobi west into industrial area going towards east lands. Rivers in Nairobi regularly overflow their banks and inundate low-lying areas like T-Mall, Nairobi west, industrial area and Mathare valley. These are the flood hotspots of Nairobi that also have high severity of fatalities and impact on infrastructure. We believe that our methodology of examining urban textures over time, using remote sensing images, combined with flood hazard impact information, will help scientists and hazard managers better understand, and prepare for, the interlinked nature of urban change with the flood hazard.

How to cite: Majani, B., Malamud, B. D., and Millington, J.: Urban textures and flood hazard impacts from 2008 to 2018 in Nairobi, Kenya, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-17553, https://doi.org/10.5194/egusphere-egu23-17553, 2023.