Late Miocene to Present erosion of the Masirah allochthon and its cover based on clay minerals and thermal modeling, Batain area, eastern Sultanate of Oman
- 1Sultan Qaboos University, College of Science, Department of Earth Sciences, Muscat, Oman (scharfa@zedat.fu-berlin.de)
- 2Dipartimento di Scienze della Terra, Sapienza Università di Roma, Rome, Italy
The Batain area of easternmost Arabia was overthrust from the ESE by deep-sea basin rocks and the Masirah Ophiolite in the course of left-lateral transpression between Arabia and India during the Cretaceous/Paleogene transition. A ~40 km-wide fold-and-thrust belt covers the Batain area of easternmost Oman. The original thickness of this belt including the Masirah Ophiolite and the post-nappe cover, and the timing of its erosion is largely unknown. We performed X-ray diffraction analyses of deep-water sediments to define the thermal history of the Batain fold-and-thrust belt by constraining its thermal signature, maximum burial conditions and post-nappe development. The shaly Warah and Sal formations record random-ordered, mixed layer illite-smectite (I-S) with an illite content ranging between 30-40%. One-dimensional thermal modeling documents that the Batain area was covered by a ~300 m thick nappe of the Masirah Ophiolite which was eroded immediately after its emplacement during the Danian. Furthermore, the Batain area was uniformly blanketed by ~700 m-thick post-nappe rocks. Erosion of most of these Cenozoic post-nappe rocks and some allochthonous rocks occurred after peak-thermal conditions during the late Miocene. We conclude that the Batain area underwent erosion (erosion rate of 0.06 mm/a) since the Tortonian, due to monsoonal climate conditions combined with regional uplift related to the Arabia-India convergence. The clastic sediments accumulated offshore, eastwards of the Batain area, were massive Neogene to Quaternary sedimentary rocks occur.
How to cite: Scharf, A., Aldega, L., Mattern, F., and Carminati, E.: Late Miocene to Present erosion of the Masirah allochthon and its cover based on clay minerals and thermal modeling, Batain area, eastern Sultanate of Oman , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-1772, https://doi.org/10.5194/egusphere-egu23-1772, 2023.