EGU23-1837
https://doi.org/10.5194/egusphere-egu23-1837
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Rheology of host-inclusion mineral systems by in situ Raman spectroscopy

Nicola Campomenosi1, Ross John Angel2, Matteo Alvaro3, and Boriana Mihailova1
Nicola Campomenosi et al.
  • 1Department of Earth Sciences, University of Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
  • 2IGG-CNR, Via G. Gradenigo 6, I-35131 Padova, Italy
  • 3Department of Earth and Environmental Sciences, University of Pavia, Via A. Ferrata 1, I-27100 Pavia, Italy

Earthquakes and stress distribution inside the earth depend on the rheology of rocks and their constituent crystals at variable conditions of temperature (T) and pressure (P). The contrast in the thermoelastic properties between a mineral inclusion and its surrounding host often leads to a positive inclusion residual pressure (Pinc) at ambient conditions, which can be used to retrieve the P and T of entrapment (e.g. Angel et al. 2015). In addition, the evolution of the inclusion residual strain and Pinc as function of P and T also provides the opportunity to explore the rheology of the crystals involved.

In this study, we explored the rheology of zircon inclusions within pyrope-rich garnet by in situ Raman spectroscopy at high T.

Because garnet has a larger thermal expansion than zircon, inclusions showing a positive Pinc at ambient conditions experience continuous relaxation upon heating until the P gradient disappears. Available equations of state (EoS) can predict the experimental results within uncertainties, implying that the system behaves purely elastically up to a certain temperature. At higher T, zircon inclusions have a negative Pinc, which increases in magnitude according to the EoS predictions. However, at T corresponding to Pinc of about -0.2(5) GPa, the residual strains deviate from those predicted by EoS and the inclusion approaches the strain of a free zircon crystal at the same T. We interpret such a deviation as the result of plastic relaxation of the system.  On cooling, a new stress gradient in the host and a positive Pinc in the inclusion developed within the same T range where a negative Pinc was observed upon heating. Importantly, the new residual strains can be predicted by the EoS only if the entrapment conditions correspond to the first T where Pinc = 0 after plastic deformation occurred. Thus, the system underwent resetting within the time-scale of laboratory experiments. In addition, multiple heating-cooling cycles carried out on the same inclusions show that the maximum negative Pinc attainable does not change within a T range of about 200 K. These results suggest that the resistance to plastic deformation (i.e. yield strength) of garnet decreases under tensile stress. Therefore, we conclude that the sign of the stress field affects the yield strength of crystals and may have important consequences on the overall rock rheology and related processes.

Financial support by the Alexander von Humboldt Foundation and the ERC grant agreement 714936 (ERC-STG TRUE DEPTHS) to M. Alvaro

Angel, R. J., Nimis, P., Mazzucchelli, M. L., Alvaro, M. & Nestola, F. (2015). Journal of Metamorphic Geology, 33(8), 801-813.

How to cite: Campomenosi, N., Angel, R. J., Alvaro, M., and Mihailova, B.: Rheology of host-inclusion mineral systems by in situ Raman spectroscopy, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-1837, https://doi.org/10.5194/egusphere-egu23-1837, 2023.