EGU23-2079
https://doi.org/10.5194/egusphere-egu23-2079
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hotspots and impacts of present and future compound hot and dry summers in Europe

Andrea Böhnisch1, Elizaveta Felsche1,2,3, Magdalena Mittermeier1, Benjamin Poschlod4, and Ralf Ludwig1
Andrea Böhnisch et al.
  • 1Department of Geography, LMU Munich, Munich, Germany (a.boehnisch@lmu.de)
  • 2Center for Digital Technology and Management, Munich, Germany
  • 3Technical University of Munich, Munich, Germany
  • 4Research Unit Sustainability and Climate Risk, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany

Compound hot and dry events (such as recent summers of 2015, 2018 and 2022 in Europe) have an impact on a wide range of sectors, including health, transport, energy production, ecology, agriculture and forestry. The co-occurrence of extreme heat and drought poses a risk to water security in particular, since heat exacerbates moisture shortages during dry periods through increased evapotranspiration while at the same time water demand increases (e.g., for drinking water, cooling, irrigation). Current research suggests that climate change will increase the intensity, frequency, and duration of joint hot and dry extreme events in Europe. However, most studies focus on the drivers applying coarse-resolution global climate models.

This study exploits a 50-member single-model initial condition large ensemble (SMILE) of the Canadian Regional Climate Model, version 5, at 12 km resolution (CRCM5-LE, RCP 8.5 from 2006 onwards, driven by the Canadian Earth System Model Version 2 large ensemble, CanESM2-LE). The application of a regional SMILE provides an extensive database of compound events and, subsequently, robust estimations of their occurrence changes across Europe, from current to future states and in high geographical detail.

We define compound hot and dry summers based on joint exceedances of temperature and (negative) precipitation thresholds (2001-2020 JJA 95th percentiles). By considering low soil moisture (below regional 2001-2020 JJA 10th percentile) as an impact indicator, we further show the spatially varying connection between compound hot and dry summers and low water availability in Europe. Compound event occurrences are investigated in a current climate (2001-2020) and future 20-year slices at global warming levels (GWL, derived from the CanESM2-LE) of +2 °C and +3 °C, with each period represented by 1000 model years. Last, we investigate the underlying processes (e.g., heat budget terms) of changing event occurrences and their spatial distribution, and discuss the land use-specific (e.g., urban, agricultural, natural) exposure to impacts on water availability during compound hot and dry summers.

We identify areas in the Mediterranean and northern France as hotspots with a fivefold occurrence frequency of compound hot and dry summers for +2 °C GWL. With +3 °C GWL, the Mediterranean, France, Belgium, southern Germany, Switzerland, and the south of UK and Ireland are affected by a tenfold occurrence frequency with respect to current climate.

This study is an important boundary condition to the development of adaptation strategies for the affected regions.  At the same time, it quantifies the reduction of event occurrence in a +2°C world compared to the higher GWL of +3°C, highlighting the importance of climate mitigation strategies and policies.

How to cite: Böhnisch, A., Felsche, E., Mittermeier, M., Poschlod, B., and Ludwig, R.: Hotspots and impacts of present and future compound hot and dry summers in Europe, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-2079, https://doi.org/10.5194/egusphere-egu23-2079, 2023.