EGU23-2996
https://doi.org/10.5194/egusphere-egu23-2996
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development of a Rapid Seismic Loss Prediction Model for Residential Buildings using Machine Learning - Christchurch, New Zealand

Samuel Roeslin
Samuel Roeslin
  • University of Auckland, Civil and Environmental Engineering, New Zealand (sroe459@aucklanduni.ac.nz)

The 2010-2011 Canterbury Earthquake sequence (CES) led to unprecedented building damage in the Canterbury region, New Zealand. Commercial and residential buildings were significantly affected. Due to New Zealand’s unique insurance setting, around 80% of the losses were covered by insurance (Bevere & Balz, 2012; King et al., 2014). The Insurance Council of New Zealand (ICNZ) estimated the total economic losses to be more than NZ$40 billion, with the Earthquake Commission (EQC) and private insurers covering NZ$10 billion and NZ$21 billion of the losses, respectively (ICNZ, 2021). As a result of the CES and the 2016 Kaikoura earthquake, EQC’s Natural Disaster Fund was depleted (EQC, 2022). This highlighted the need for improved tools enabling damage and loss analysis for natural hazards.
This research project used residential building claims collected by EQC following the CES to develop a rapid seismic loss prediction model for residential buildings in Christchurch. Geographic information systems (GIS) tools, data science techniques, and machine learning (ML) were used for the model development. Before the training of the ML model, the claims data was enriched with additional information from external data sources. The seismic demand, building characteristics, soil conditions, and information about the liquefaction occurrence were added to the claims data. Once merged and pre-processed, the aggregated data was used to train ML models based on the main events in the CES. Emphasis was put on the interpretability and explainability of the model. The ML model delivered valuable insights related to the most important features contributing to losses. Those insights are aligned with engineering knowledge and observations from previous studies, confirming the potential of using ML for disaster loss prediction and management. Care was also put into the retrainability of the model to ensure that any new data from future earthquake events can rapidly be added to the model. 

How to cite: Roeslin, S.: Development of a Rapid Seismic Loss Prediction Model for Residential Buildings using Machine Learning - Christchurch, New Zealand, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-2996, https://doi.org/10.5194/egusphere-egu23-2996, 2023.