EGU23-3017
https://doi.org/10.5194/egusphere-egu23-3017
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Energy Conversion and Partition in Plasma Turbulence Driven by Magnetotail Reconnection

Xinmin Li1, Rongsheng Wang1, Can Huang2, Quanming Lu1, and San Lu1
Xinmin Li et al.
  • 1School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
  • 2Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

A long-outstanding issue in fundamental plasma physics is how magnetic energy is finally dissipated in kinetic scale in the turbulent plasma. Based on the Magnetospheric Multiscale mission data in the plasma turbulence driven by magnetotail reconnection, we establish the quantitative relation between energy conversion (J·E , J is current density and E is electric field) and current density (J). The results show that the magnetic energy is primarily released in the perpendicular directions (up to 90%), in the region with current density less than 2.3 Jrms, where Jrms  is the root mean square value of the total current density J. In the relatively weak current region (< 1.0 Jrms ), the ions get most of the released energy while the largely negative energy conversion rate of the electrons means a dynamo action. In the strong currents (>1.0 Jrms), the ion energization was negligible and the electrons are significantly energized. Moreover, a linearly increasing relationship was established between J·E and J. The observations indicate that ions overall dominate energy conversion in turbulence, but the electron dynamics are crucial for energy conversion in intense currents and the turbulence evolution.

How to cite: Li, X., Wang, R., Huang, C., Lu, Q., and Lu, S.: Energy Conversion and Partition in Plasma Turbulence Driven by Magnetotail Reconnection, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-3017, https://doi.org/10.5194/egusphere-egu23-3017, 2023.