Construction of Interactive Websites for Remote Sensing Datasets
- 1Remote Sensing Image Analysis Group, Technische Universität Berlin, Berlin, Germany (k.clasen@tu-berlin.de, demir@tu-berlin.de)
- 2BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
As a result of advancements in satellite technology, archives of remote sensing (RS) images are continuously growing, providing a valuable source of information for monitoring the Earth's surface. Researchers construct well-designed and ready-to-use datasets from the plethora of RS images for the broader community to make it easier to develop and compare novel algorithms, models, and architectures to further deepen our understanding of our planet from space. However, the descriptions of these datasets are often published in scientific papers as PDF files with several limitations:
- The target audience is typically domain experts familiar with scientific jargon;
- The work is required to adhere to a specific page limit;
- Once the document is published, it is difficult to update sections or to centralize discussions around it.
To overcome these issues, here we introduce the concept of interactive dataset websites that aim at making the dataset and research based on it more accessible. With visual and interactive examples, users can see exactly how the data is structured and how the data can be used in different contexts. For example, when working with RS data, it is beneficial to get a quick overview of the geographical distribution. By providing more in-depth background information about data sources and product specifications, these websites can also help users understand the context in which the data was collected, how it might be relevant to their work, and how to avoid common pitfalls. Another important aspect of interactive dataset websites is the inclusion of example code for using, loading, and visualizing the data. Especially when working with RS images (e.g., multispectral, hyperspectral, synthetic aperture radar data, etc), it is often not trivial to visualize the data. Providing example code can be especially useful for researchers unfamiliar with the specific tools required to work with the data or to introduce to the community tools specifically written to make it easier to work with the dataset. Quick feedback can be vital, as it allows researchers to report problems or ask questions that the authors or community can address in an open and centralized manner. Creating these "living, ever-evolving documents" makes them an increasingly valuable resource for anyone working with the dataset, leading to more robust and reliable research.
It might seem daunting at first to create such an interactive dataset website, but due to recent open-source projects such as Executable Books (https://executablebooks.org/) and free hosting providers such as GitHub Pages (https://pages.github.com/), it has become relatively easy to produce and host such websites. The HTML content can be generated from Jupyter Notebooks, a tool that many researchers and data scientists are familiar with. To provide an example, in our talk we will showcase an interactive dataset website for the BigEarthNet-MM dataset, which you can find here: https://docs.kai-tub.tech/ben-docs/
How to cite: Clasen, K. N. and Demir, B.: Construction of Interactive Websites for Remote Sensing Datasets, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-3254, https://doi.org/10.5194/egusphere-egu23-3254, 2023.