EGU23-326
https://doi.org/10.5194/egusphere-egu23-326
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Thermal constraints on the ureilite parent body (UPB): Evidence from the refractory spinel in polymict ureilite EET 87720 using in situ SIMS

Yaozhu Li1,2, Phil J. A. McCausland1,2, Roberta L. Flemming1,2, and Noriko T. Kita3
Yaozhu Li et al.
  • 1Department of Earth Sciences, Western University, London, Canada (yli2889@uwo.ca)
  • 2Institute for Earth and Space Exploration, Western University, London, Canada
  • 3University of Wisconsin-Madison, Madison, the United States of America

Ureilites are ultramafic achondrite meteorites that likely represent a large parent body. Large olivine and pyroxene grains display a high degree of textural equilibrium, forming “triple-junction” contacts at their grain boundaries. However, ureilites also have primitive characteristics, for example high siderophile and carbon content, high noble gas content, and unequilibrated olivine and pyroxene compositions. So far, the origin of ureilites and their parent body are still debated as it is difficult to explain the observation of textural equilibrium juxtaposed with such primitive properties. Conventionally, ureilites are considered to be mantle residues from within an unknown, large rocky body. Because feldspar is completely depleted from most ureilite samples, it has been thought that the parent body accreted early and experienced extensive igneous differentiation processes, with primary heating attributed to short-lived 26Al decay in the early solar system. Here we report on polymict ureilite breccia Elephant Moraine 87720. We found that the sample has several unusually magnesian-rich olivine clasts with mg# (Mg/(Mg+Fe)) up to 98.7 and calcium-poor pyroxene with Wo as low as to 1.0. Moreover, we discovered two coarse-grained aluminous spinel grains with over 56.4-58.7 wt% Al2O3 and 11.3-11.8wt% Cr2O3, in contact with olivine and pyroxene grains. These aluminous spinel clasts are unique among ureilite samples. To determine the provenance of the spinel grains and other clasts (e.g., high magnesian olivine and low calcium pyroxene) in this sample, we conducted in situ oxygen 3-isotope analyses by Secondary Ion Mass Spectrometry SIMS (IMS 1280), University of Wisconsin-Madison. SIMS mineral data plot along the slope ~1 line in the oxygen 3-isotope diagram, similar to those of bulk ureilites (Greenwood et al., 2017, Chemie der Erde 77, 1-43) including ureilitic samples found in Almahata Sitta, with the same range of ∆17O (from –2.3‰ to –0.2‰). These grains follow the Fe-loss/addition trend defined by a molar plot of Fe/Mn versus molar Fe/Mg, showing a near constant and chondritic Mn/Mg ratio, falling in among common ureilitic compositions. We conclude that the origin of these clasts, including the aluminous spinel, is primarily ureilitic, but they extend the δ18O measurement for ureilites up to 9.7 ‰. We hypothesize a magmatic origin for these clasts that they were formed under low-oxygen fugacity, in a high Al/Si ratio hot melt, favouring the crystallization of Al-spinel instead of a Cr-rich endmember. The clasts in this EET 87720 specimen may possibly represent a new type of high Al, low Ca, low Cr lithic material within the ureilite parent body. Finally, we calculated a possible crystallization temperature of 1379 K using spinel-olivine equilibrium crystallization (Roeder et al 1979, Contrib. Min. Petrol. 6, 325-334). Our estimate corresponds well with the theoretical model proposed by Goodrich et al. (2004, Chemie der Erde 64, 283-327) that the UPB was hot, with a temperature above 1100 °C (1373 K). Our results are consistent with other petrological evidence and olivine-pigeonite-melt thermometry (Singletary and Grove, 2003, Met. Planet. Sci. 38, 95-108) which constrain smelting temperatures within the ureilite parent body.

How to cite: Li, Y., McCausland, P. J. A., Flemming, R. L., and Kita, N. T.: Thermal constraints on the ureilite parent body (UPB): Evidence from the refractory spinel in polymict ureilite EET 87720 using in situ SIMS, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-326, https://doi.org/10.5194/egusphere-egu23-326, 2023.

Supplementary materials

Supplementary material file