Library of simulated gamma-ray glows and application to previous airborne observations
- 1Birkeland Centre for Space Science, University of Bergen, Bergen, Norway
- 2INAF-OAS Bologna, Bologna, Italy
Gamma-Ray Glows (GRGs) are bursts of high-energy radiation that are emitted by thunderclouds and have a duration of seconds to minutes. These radiation sources are extended over several to tens of square kilometers. GRGs have been observed from detectors on the ground, in aircraft, and on balloons. In this paper, we present a Monte-Carlo model that can be used to study the production and propagation of GRGs. We compare our model to one developed by Zhou et al. (2016) and find small differences between the two. We have also created a library of simulations that is available to the community. Using this library, we were able to reproduce five previous GRG observations from five airborne campaigns: balloons from Eack et al. (1996) and Eack et al. (2000), and aircraft from the ADELE (Kelley et al. 2015), ILDAS (Kochking et al. 2016), and ALOFT campaigns (Østgaard et al. 2019).
Our simulation results confirm that the flux of cosmic-ray secondary particles at a given altitude can be enhanced by several percent or even several orders of magnitude due to the effect of thunderstorms' electric fields. These results explain the five observations we studied and will be useful for the upcoming ALOFT-2023 campaign. While some GRGs can be explained solely by the MOS process, the strongest GRGs observed require electric fields significantly larger than the RREA threshold value (E_th). Some of the observations also came with in-situ electric field measurements that were always lower than E_th, but these measurements may not have been taken from the regions where the glows were produced. This study supports the idea that some thunderstorms must have electric fields with magnitudes of at least E_th on a kilometer scale.
References :
-Effect of near-earth thunderstorms electric field on the intensity of ground cosmic ray positrons/electrons in tibet. Zhou et al. (2016). https://doi.org/10.1016/j.astropartphys.2016.08.004
-Balloon-borne x-ray spectrometer for detection of x-rays produced by thunderstorms. Eack et al. 1996. https://doi.org/10.1063/1.1146959
-Gamma-ray emissions observed in a thunderstorm anvil. Eack et al. 2000. https://doi.org/10.1029/1999GL010849
-Relativistic electron avalanches as a thunderstorm discharge competing with lightning. Kelley et al. 2015. https://doi.org/10.1038/ncomms8845
-In-Flight Observation of Gamma Ray Glows by ILDAS. Kochkin et al. 2017. https://doi.org/10.1002/2017JD027405 -Gamma Ray Glow Observations at 20-km Altitude. Østgaard et al. 2019. https://doi.org/10.1029/2019JD030312
How to cite: Sarria, D., Østgaard, N., Marisaldi, M., Lehtinen, N., and Mezentsev, A.: Library of simulated gamma-ray glows and application to previous airborne observations, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-3281, https://doi.org/10.5194/egusphere-egu23-3281, 2023.