Seasonal buildup and downward transfer of Warm Pool heat content by wind-driven ocean mixing
- 1Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States of America
- 2School of Earth Sciences, Zhejiang University, Hangzhou, China
- 3College of Earth, Oceanic, and Atmospheric Sciences, Oregon State University, Corvallis, United States of America
Ocean heat stored in the Western Pacific Warm Pool (WPWP) helps drive some of the foremost modes of weather and climate variability including ENSO, Intraseasonal Oscillations, and tropical cyclones. To understand the associated coupled mechanisms that regulate ocean temperature, we use reanalysis and a novel moored microstructure dataset yielding estimates of the turbulent ocean heat flux (Jq(z)) to describe how WPWP mixing is regulated by seasonal, intraseasonal, and synoptic-scale atmospheric disturbances. It is argued that observed variations in Jq(z) impact seasonal-to-synoptic trends in SST and mixed-layer depth. Jq(z) is weakest during Spring (dry season), when heat fluxes into the ocean (Qnet > 0) create a shallow mixed layer (ML) of warm water that lays undisturbed atop the seasonal thermocline. In the Summer, westerly winds associated with the Asian Monsoon create favorable conditions for tropical depression-like (TD-like) storms, which in turn cause episodic spikes in Jq(z) that gradually deepen the ML and momentarily cool sea surface temperature (SST) while the background SST continues to rise. Towards the end of the summer, SST at our mooring was greater than 30.7 °C but rapidly dropped and stabilized below 29.5 °C after a strong pulse of the Madden-Julian Oscillation (MJO) cooled the upper ocean and deepened the ML for almost 15 days in a row. Enhanced upper ocean mixing continued to be episodic throughout the Fall as TD-like storms and intraseasonal disturbances moved over the mooring site. Mixing remained high throughout the Winter, when cold outbreaks forced the upper ocean at high frequencies and mean convective cooling (Qnet < 0) further contributed to mixing. A similar seasonality is observed at the thermocline level, where Jq(z) is enhanced by storm-driven near-inertial internal waves (NIWs) whose power peaks between Fall and Winter. While intraseasonal wind bursts had the greatest impact on near-surface mixing, synoptic disturbances generated greater-amplitude NIWs and thus had a greater potential to mix temperature gradients in the permanent thermocline. Lastly, we use reanalysis data to argue that storm-driven mixing shapes interannual relations between SST, storm activity, and the Asian Monsoon.
How to cite: Gutierrez Brizuela, N., Xia, Y., Xie, S.-P., Alford, M., and Moum, J.: Seasonal buildup and downward transfer of Warm Pool heat content by wind-driven ocean mixing, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-3693, https://doi.org/10.5194/egusphere-egu23-3693, 2023.