South Asian summer monsoon enhanced by the uplift of Iranian Plateau in Middle Miocene
- Institute of Atmospheric Physics, Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Science and Geophysical Fluid Dynamics (LASG), Beijing, China (zuomeng@lasg.iap.ac.cn)
The South Asian summer monsoon (SASM) remarkably strengthened during the Middle Miocene (16-11 Ma), coincident with the rapid uplifts of the Iranian Plateau (IP) and the Himalaya (HM). Although the development of the SASM has long been linked to the topographic changes in the Tibetan Plateau (TP) region, the effects of the HM and IP uplift are still vigorously debated, and the underlying mechanisms remain unclear. Based on Middle Miocene paleogeography, we employ the fully coupled earth system model CESM to perform a set of topographic sensitivity experiments with altered altitudes of the IP and the HM. Our simulations reproduce the strengthening of the SASM in northwestern India and over the Arabian Sea, largely attributing to the thermal effect of the IP uplift. The elevated IP insulates the warm and moist airs from the westerlies in the south of the IP and produces a low-level cyclonic circulation around the IP, which leads to the convergence of the warm and moist air in the northwestern India and triggers positive feedback between the moist convection and the large-scale monsoon circulation, further enhancing the monsoonal precipitation. Whereas the HM uplift produces orographic precipitation without favorable circulation adjustment for the SASM. We thus interpret the intensification of the Middle Miocene SASM in the western part of the South Asia as a response to the IP uplift while the subtle SASM change in eastern India reflects the effects of the HM uplift.
How to cite: Zuo, M., Sun, Y., Zhao, Y., Ramstein, G., Ding, L., and Zhou, T.: South Asian summer monsoon enhanced by the uplift of Iranian Plateau in Middle Miocene, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-3814, https://doi.org/10.5194/egusphere-egu23-3814, 2023.